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Abstract

We model electoral competition between two parties when voters can rationally learn about their
political positions through flexible information acquisition. Rational voter learning generates
polarized and aligned political preferences, even when voters’ true positions are unimodally dis-
tributed and independent across policy issues. When parties strategically select their positions,
voter and party polarization mutually reinforce each other, and both rise as information costs
decline. Because we show voters learn exclusively about the axis of party disagreement, party
positions respond to only one dimension of aggregate shocks to voter preferences. We then
adapt our model to a market setting with horizontally differentiated goods when consumers
learn about their product preferences. Lower information costs increase product differentiation
and moreover enable firms to charge higher markups, reducing consumer welfare. These results

show how lower information costs can reduce welfare in both political and economic contexts.
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1 Introduction

Voter positions in the United States display two puzzling features. First, one can predict a voter’s
position on most policy issues remarkably well by knowing just their location on a one-dimensional
left-right axis. As a consequence, positions on different issues are strongly aligned, which is surpris-
ing given the wide variety of issues, such as taxation, immigration, and the environment. Second,
evidence suggests that voter positions are increasingly polarized, in the sense of being clustered
around two poles on the left-right axis. In most settings, we expect the distribution of characteris-
tics to have a unimodal distribution by considerations such as the central limit theorem.!

This paper provides a joint explanation of issue alignment and polarization based on rational
voter learning. Previous research and public discourse attribute issue alignment and polarization
to voter biases like confirmation bias, herding due to echo chambers, or partisan news media. By
contrast, we show issue alignment and polarized ideology emerge naturally from rational (i.e., no
biases) and individual (i.e., no herding) voter learning, driven by voters’ own information choices
(i.e., no media effects). Central to the mechanism is that voters learn about their political position
through flexible information acquisition in order to decide between two parties. Voter learning can
involve understanding the effects of policies—for example, learning about the effects of tariffs to
inform their position on trade policy. We assume that such learning is costly, whether in time,
effort, or money. This paper shows that the resulting cost-minimization motive structures rational
voter learning in a way that generates issue alignment and polarization.

Why study rational voter learning even though voters may be influenced by various biases? An
explanation based on rational learning can help disentangle behaviors driven by biases from those
arising from rational ideology formation. This distinction is important for assessing the functioning
of democratic elections (Achen and Bartels, 2017). If biases dominate, candidates may cater to
these biases rather than advancing policies that address societal needs. Conversely, if voter positions
reflect rational learning, we may be more optimistic that elections produce policies aligned with
voters’ interests. Whether this optimism is warranted is explored in the second part of this paper,
which studies the effects of voter learning on party positions.

We analyze rational voter learning in an otherwise standard political-economy model. To study
issue alignment, we incorporate a multidimensional policy space, where each dimension represents
a different policy issue. Voters face two parties, each adopting a policy platform in this space.
These policy platforms are exogenous in the first part of our paper. Following the literature, a
voter’s utility decreases quadratically in the distance between a policy and her ideal point, which

reflects her political position. In our model, voters initially lack knowledge of their ideal point but

1Section 3.4 examines the evidence for issue alignment and ideological polarization in detail. While the evidence
for issue alignment is strong, the evidence on bimodality is more speculative; there is ongoing debate about this issue
(Fowler, Hill, Lewis, Tausanovitch, Vavreck, and Warshaw, 2022). Understanding the sources of potential polarization
is important because of evidence of increasing voter polarization (Pew Reseach Center, 2014; Martin and Yurukoglu,
2017; Eguia and Hu, 2022) and because of the relevance of polarization for political tensions, as emphasized by
the literature on polarization (Esteban and Ray, 1994): a polarized distribution can lead to the formation of two
homogeneous groups with few individuals bridging the divide, increasing the risk of conflict.
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Figure 1: Exemplary policy platforms x, and x; of parties @ and b, respectively, under two policy
issues. Voter learning induces revealed ideal points on the diagonal line.

can form political opinions through learning. We assume that voters start with a homogeneous
prior that conforms to the true distribution of ideal points, which in the simplest case is normal
and independent across issues.? Voters then update their beliefs by acquiring information flexibly,
following the rational-inattention framework (Sims, 2003). This framework allows voters to choose
both how much and what type of information to acquire, subject to a cost increasing in information.
After acquiring information, and given quadratic utility, a voter selects the party whose policy
bundle is closer to her expected ideal point. We refer to this expected ideal point as her revealed
ideal point, distinguishing revealed ideology—the distribution of revealed ideal points induced by
learning—from the distribution of true ideal points.

Our first result is that rational voter learning generates issue alignment and polarization: re-
vealed ideal points align along a left-right axis and cluster around two poles, even if true ideal points
are independent across issues and centrally clustered. At the core of this mechanism is that voters
trade off making an informed choice and minimizing the cost of information. By acquiring only
the information necessary to determine which party position is closer, voters align their preferences
along a single axis and polarize—a process we explain in more detail next.

To understand the high-level intuition for why cost-effective learning generates issue alignment,
consider a two-dimensional policy space with an economic and a social issue. Suppose the two
parties propose policy platforms, z, and zj, as shown in Figure 1: one platform is more economically
left and socially liberal than the other. A unique line passes through these platforms, the direction
of which we refer to as the axis of disagreement. This axis of disagreement is the direction along
which parties differentiate, combining the two issues in proportion to the extent of disagreement
on each. Crucially, voters learn only where their ideal point lies along this axis, as this determines

which platform is closer. Their position along directions orthogonal to the axis is irrelevant, as

2More generally, the paper allows for any elliptical distribution with arbitrary correlation across issues. Section
3.1 discusses the case of heterogeneous priors.



it does not affect the relative proximity of the platforms. Consequently, voters align preferences
across issues, learning only whether they lean economically left and socially liberal or economically
right and socially conservative. Revealed ideal points lie on a line, which can be interpreted as
an endogenous left-right axis. This left-right axis reflects the direction of party disagreement and
passes through voters’ prior expectation of their ideal points. This result holds for any number of
policy issues, assuming a reflection-invariant information cost and an elliptical prior.

The mechanism by which cost-effective learning generates ideological polarization is as follows.
Voters only need to determine which party they are closer to, not by how much. To do so, they
optimally acquire a binary signal about their ideal points. This signal sorts voters into two groups:
those who believe they are closer to one party and those who believe they are closer to the other.
Even centrist voters categorize themselves based on this binary information, causing them to per-
ceive their preferences as more extreme than they truly are. We also examine how robust this
mechanism is to shocks about the desirability of the two parties that occur after learning. For
example, voters may receive new information about candidates’ competence closer to the election.
These “valence shocks” make it valuable for voters to learn how much they prefer one party over
the other, which previously held no value. We show that the distribution of revealed ideal points
remains confined to the endogenous left-right axis. For small valence shocks, this distribution is
bimodal.

The second part of this paper examines whether elections produce policies that serve voters’
interests when voter positions result from rational learning. To address this, we endogenize party
platforms and explore their interaction with voter learning under two alternative timings. In both
timings, parties strategically position themselves in the policy space, balancing electoral prospects
against their own policy preferences. In the first timing, voters learn before parties choose their
platforms; in the second, parties move first and voter learning responds to party positioning. Con-
sidering both timings allows us to compare how the order of information acquisition and platform
choice shapes equilibrium outcomes.

In the first timing, voters learn optimally in anticipation of party platforms, and parties choose
their platforms based on the revealed voter ideology resulting by this learning. We show two results
about party platforms: more voter learning can hurt voters by increasing party polarization, and
parties respond to only one dimension of aggregate shocks to voter preferences.

First, ideological polarization of voters and platform polarization are mutually reinforcing, and
perhaps counterintuitively, less costly information increases both. When party platforms are more
polarized—that is, farther apart—voters face higher stakes in the election and are motivated to
learn more about their ideal points. More information leads to a more polarized distribution of
voter ideal points, creating more extreme voters who are less responsive to party platforms. As
a result, parties can move their platforms closer to their ideal policies without losing as many
votes, reinforcing platform polarization. Cheaper information amplifies this cycle: it encourages
voters to learn more about their preferences, leading to more voter and platform polarization.

Paradoxically, better access to information about political preferences may harm voters, as the



equilibrium platforms end up farther from the welfare-maximizing policy. This mechanism may
help explain the increasing platform polarization in the US over recent decades (McCarty, Poole,
and Rosenthal, 2016), during advances in information technology, such as the internet, which has
made information more accessible.

Second, due to rational voter learning, policy platforms respond solely to a single dimension
of aggregate shocks to voter preferences. Aggregate shocks to voter preferences affect what the
optimal policy should be across multiple dimensions; ideally, we would want voters to learn about
these shocks so that parties can adjust their platforms accordingly. However, voters’ optimal learn-
ing reduces politics to a single dimension—the axis of party disagreement—and neglects all other
dimensions. As a result, party platforms respond solely to one dimension of aggregate shocks. This
inefficiency is particularly problematic because it is not apparent from revealed voter ideology:
aggregate shocks manifest as one-dimensional changes along the axis of disagreement, and party
platforms adjust in response to these observed changes. Meanwhile, the other dimensions of aggre-
gate shocks remain latent—they do not influence revealed voter ideology and thus go unnoticed in
empirical data.

In the second timing, parties choose their platforms before voters learn. This gives parties an
agenda-setting role: through their policies, parties influence which issues voters pay attention to.
For example, if a party polarizes on a policy issue, voters will pay more attention to this issue
as it becomes more relevant to the electoral choice. This timing introduces two novel strategic
forces: a moderation force and a differentiation force. First, parties may moderate their policy
platforms to skew voter learning in their favor. Second, the more extreme party may find it
optimal to differentiate from the moderate party to trigger more voter learning, thereby reducing
the skew toward their opponent. As information costs decline, the moderation force weakens,
leading to increased platform polarization, as in the first timing. The differentiation force implies
that parties may adopt positions more extreme than their own ideal policies to strategically affect
voter learning. In contrast, in models with exogenous voter positions (e.g., Roemer, 1997), parties
never adopt positions more extreme than their own ideal policies.

To illustrate the broader applicability of our results, we adapt our model to a market setting
where consumers learn about their preferences for horizontally differentiated products. In this
context, firms not only choose product attributes—similar to how parties select policy platforms—
but also set prices to maximize profits. We show that cheaper information leads consumers to
become better informed, prompting firms to increase product differentiation. While this could
benefit consumers by better matching them to products, product differentiation harms consumers
because firms exploit it to raise prices. As a result, despite the reduction in information costs,
consumer welfare decreases overall.

Our results call for caution when interpreting empirical findings about voter ideology being
influenced by party elites as a sign of voter irrationality. Political scientists have long argued
that political elites have a large influence on the ideology of voters (Campbell, Converse, Miller,
and Stokes, 1960; Zaller, 1992; Lenz, 2012). Such findings have traditionally been interpreted as



evidence of voter irrationality. This interpretation is shared by Achen and Bartels (2017), who
argue such voter behavior presents a serious threat to democracy. If parties can shape the ideology
of voters instead of merely responding to it, it is unclear whether elections produce governments
responsive to the preferences of voters. We hope to contribute to this debate by showing that
some forms of party influence on voter ideology are consistent with voter rationality and do not
preclude that policy is responsive to voters’ true preferences. In our model, both issue alignment
and polarization of voter ideal points depend on party platforms. First, the alignment of voter
ideal points across policy issues is determined by the relative positions of parties. As illustrated in
Figure 1, because party a is more left and liberal than party b, in the resulting voter ideology a
left economic position aligns with a liberal social position. Second, more polarized party platforms
result in more polarized voters (Proposition 1). Although in both cases voters seem to simply
follow party positions, our model shows such effects result from rational voter learning. Moreover,
in our equilibrium, party platforms do respond to voters’ true ideal points, namely to the center
of their distribution (Theorem 3). However, parties do not respond to aggregate shocks to voter
preferences in more than one dimension (Theorem 4). On a higher level, our model illustrates how
revealed preferences may differ systematically from true preferences and how they may do so in a
context-dependent way.

Our model has policy implications for addressing issue alignment and polarization. Traditional
approaches—such as improving political knowledge (Carpini and Keeter, 1996) or breaking up
echo chambers (Sunstein, 2018)—may be ineffective if issue alignment and polarization stem from
rational voter learning. Instead, more fundamental changes to voters’ choice sets would be neces-
sary to incentivize multidimensional and non-binary learning. Multidimensional learning could be
incentivized through electoral reforms that increase the number of parties, such as transitioning
from plurality elections to proportional representation (as suggested by Corollary 1).> Non-binary
learning could be incentivized through voting or participation mechanisms that elicit the intensity
of voter preferences (e.g., Casella, 2005).

The paper is organized as follows. The rest of this section discusses related literature. Section 2
introduces the model. Section 3 analyzes voter learning and discusses the related evidence. Section
4 studies electoral competition when voter ideology results from optimal learning. Section 5 studies
the model under an alternative timing, in which parties move before voters learn. Section 6 adapts
our model to an industrial organization setting with horizontally differentiated products. Section

7 concludes.

Related Literature This paper contributes to the growing literature on rationally inattentive
voters. We show rational inattention explains properties of voter ideology by studying flezible learn-
ing about ideal points. Matéjka and Tabellini (2021) study electoral competition where voters are
inattentive to party platforms. They show more attentive voters influence platforms more strongly,

as they respond more to them. By contrast, we show attention to ideal points reduces respon-

3Under k > 2 parties, a weaker form of issue alignment is predicted by our model: revealed voter ideology is at
most (k — 1)-dimensional.



siveness to platforms, which increases polarization when information becomes cheaper. Matéjka
and Tabellini (2021) find that multidimensional policies are inefficient because voters pay excessive
attention to divisive issues. In our model, inefficiency arises because voters focus on a single di-
mension, the axis of party disagreement. Yuksel (2022) analyzes voters learning under partitional
signals and finds that more specialized learning increases polarization. We allow for flexible learn-
ing and show that cheaper information increases polarization through a different mechanism. Li
and Hu (2023) study attention to implemented policies in an electoral-accountability setting. They
show that the welfare effects of increased attention and mass polarization are ambiguous. Hu, Li,
and Segal (2023) analyze learning about valence through an attention-maximizing intermediary.
They show it generates policy divergence even with office-motivated candidates. By contrast, we
study divergence as arising from ideologically motivated candidates and study how it interacts with
voter learning.

The literature has proposed several explanations for issue alignment and polarized ideology.
Converse (1964) introduced the concept of issue alignment, which he termed ideological constraint,
attributing it to logical, psychological, and social sources. Enke, Rodriguez-Padilla, and Zim-
mermann (2023) propose that moral universalism, the degree of altruism toward strangers versus
in-group members, explains correlations in policy views across domains. Spector (2000) derives
one-dimensional ideology from cheap talk between two groups with differing priors, while DeMarzo,
Vayanos, and Zwiebel (2003) attribute it to networks and a persuasion bias. Bayesian persuasion
can also generate low-dimensional types (Rayo and Segal, 2010; Malamud and Schrimpf, 2022).4
Ideological polarization has been linked to cognitive limitations, such as correlation neglect (Levy
and Razin, 2015; Ortoleva and Snowberg, 2015) and bounded rationality (Eguia and Hu, 2022).
Other papers have also proposed rational inattention as a mechanism for belief polarization, albeit
through ex-ante heterogeneity in preferences (Novak, Matveenko, and Ravaioli, 2024) or path-
dependent sequential information acquisition (Nimark and Sundaresan, 2019). Callander and Car-
bajal (2022) explain dynamic polarization through voters adjusting their ideal points toward the
party they voted for to rationalize their choice. Our model complements these works by providing
a unified explanation for both issue alignment and polarization.

The literature has provided many mechanisms for platform divergence, breaking the median
voter result by Downs (1957). We do not propose a new mechanism but show how the new
ingredient of our model—endogenous ideology formation through voter learning—interacts with
perhaps the most prominent mechanism for platform divergence: ideologically motivated parties
and probabilistic voting. Ideological parties still converge to the median voter unless the electoral
outcome is uncertain (Wittman, 1983; Hansson and Stuart, 1984; Calvert, 1985). The two common
ways to introduce electoral uncertainty are through uncertainty about the ideological position of
the median voter (Roemer, 1994) and through valence shocks (Hinich, 1977; Lindbeck and Weibull,
1987). Our model falls into the latter category, which, according to Duggan (2017), has seen little,

4More broadly related is McMurray (2023), who shows that pivotality considerations in multidimensional common-
value elections drive party platforms to bundle logically related issues, reducing platforms to a persistent one-
dimensional axis.



if any, formal analysis under ideologically motivated parties. We introduce a version of this model
that is tractable even in a multidimensional policy space. The model generalizes the mean-voter
theorem by Hinich (1977) and allows comparative statics with regards to platform polarization.
Finally, we contribute to the burgeoning theoretical literature on rationally inattentive con-
sumers in industrial organization. As we illustrate in section 6, our model can be adapted to a
setting of consumer learning in the face of horizontally differentiated products. Of particular rele-
vance are Albrecht and Whitmeyer (2023) and Biglaiser, Gu, and Li (2024), who study a duopoly
with consumers learning about their preferences. Albrecht and Whitmeyer (2023) show consumers
learn only about the relative value of products and that, in contrast to Ravid, Roesler, and Szentes
(2022), an ex-post efficient equilibrium exists as the information cost converges to zero. Biglaiser,
Gu, and Li (2024) study comparative statics of the unique symmetric equilibrium and show an
application to platform design. In both papers, as is standard, consumers learn directly about
their valuations of products, whereas we assume they learn about their ideal products in an at-
tribute space. The additional structure on preferences facilitates an analysis of endogenous product
attributes, whereas the literature typically focuses on the effect of attention on firm’s pricing de-
cisions. An exception to this is Cunha, Osério, and Ribeiro (2022), who study a spatial setting
where consumers pay attention to product attributes and prices, whereas in our model consumers
learn about their preferences. As a result, our model makes predictions on the distribution of
consumer preferences, which are endogenously one-dimensional allowing us to tractably study a

multidimensional attribute space.

2 Model

We employ a standard probabilistic voting model with valence shocks (Hinich, 1977; Lindbeck
and Weibull, 1987) and add to it an earlier stage in which voters learn about their ideal points,

anticipating the election. We discuss our assumptions at the end of this section.

Game The policy space is R” with n € N, where each dimension corresponds to a policy issue.
Voter ideal points as well as platforms live in this space. There is a continuum of voters ¢ € [0, 1]

and two parties, a and b. The timing is as follows.

0 1 2 3 4
Nature chooses Voters learn Parties choose  Valence shocks Election
types platforms realize takes place

(0) Nature draws voters’ ideal points 6; € R™ independently from an elliptical distribution
€ A(R™), with mean normalized to 0 and an arbitrary positive definite covariance matrix
Y e RS

For any topological space X, we denote by A(X) the set of Borel probability measures on X. A measure pu €
A(R™) with mean 0 and covariance matrix ¥ is elliptical if its characteristic function ® takes the form ®(0) = (0" £6)
with ¢: Rso — Rso. If 4 admits a density f, it must be of the form f(8) = g(6T£7'0) with g: R>o — Rxq. This



An example is the normal distribution N(0,3), but elliptical distributions can also have

bounded support.
(1) Each voter ¢ € [0, 1] chooses how to learn about their ideal point §; € R™.

(2) Parties a and b observe the realized distribution of voter preferences and commit to policy

platforms z, € R" and x;, € R"”, respectively.

(3) Each voter observes party platforms (x4, z;) and the realization of the valence shocks v; € R,

which can be interpreted as a signal about the competence differential of party candidates.

(4) Voters elect their preferred parties. The party with the majority wins, and each party wins

with probability one half if a tie occurs.

Because each voter is infinitesimal and there is no aggregate uncertainty about voter ideal points,
this timing is equivalent to one where stages one and two occur simultaneously. If, alternatively,
parties moved before voters learned, the results on voter learning (Theorem 1 and 2) would remain
unchanged. The qualitative predictions on voter ideology do not depend on whether voters learn
given observed or given anticipated platforms. Our timing rules out that parties choose platforms
in order to affect voter learning. In section 5, we show the comparative statics on polarization

(Theorem 3) extend to the reversed timing.

Voters The utility U; of voter i € [0, 1] has three components, which we expand on below. Utility
depends on the implemented policy x and the voter’s ideal point 6; via the policy utility u(zx, 6;),
on the net valence shock v; for candidate b, and on the information cost ¢(7;) of signal structure 7;
scaled by k,

Ui(z,7i) = u(z,0;) + vi - Lgyore ) — K- c(73). (1)

Following the workhorse model of spatial voting, we assume voters’ policy utility is quadratic in

the difference between their ideal point and the policy; that is,
u(@,0) = —(z - 0)T A(x - 0), (2)

where A € R™™" is an arbitrary symmetric, positive definite matrix. Although this assumption is
restrictive, most of the evidence on voter ideal points assumes quadratic utility with a homogeneous
A and shows it can explain voters’ survey responses well (see section 3.4).6 Further, quadratic utility
allows us to speak about “revealed ideal points” of voters who have a non-degenerate belief  about

their true ideal point 8, as the following remark shows.

Remark 1. A voter with belief m over her ideal point 6 votes as if she had the known ideal point
E-[0].

symmetry assumption states that the isodensity curves are ellipses. Independence of ideal points is not necessary for
our results on voter ideology in section 3.

SMoreover, in recent work, Bachmann, Sarasua, and Bernstein (2024) find that out of a range of commonly used
algorithms, the one based on quadratic utility performs best at predicting survey responses.



By a bias-variance decomposition of the expected utility from policy  under belief 7 over 6,
Enlu(z,0)] = u(z, Exl6]) — Ex [(6 — E4[0]) T A(0 — EL[6])]. (3)

The latter term does not depend on x, so when a voter compares two platforms (or survey response
items), they choose the one that is closer to their posterior mean. Hence, a voter with belief 7 acts
like a voter with a known ideal point of E[f]. Accordingly, we call the posterior mean of a voter’s
belief 7 over @ her revealed ideal point. This ideal point is the one that is estimated from survey
responses, which is important when we interpret empirical findings about voter ideology. We refer
to the distribution p € A(R™) over posterior means induced by learning as the revealed ideology in
the population, to distinguish it from the true distribution over ideal points.

The valence shock v; is to be interpreted as the valence difference between parties b and a. It
has the same distribution for all voters ¢ € [0, 1]. The distribution of v has a finite first absolute
moment and admits a continuous density f, that is symmetric around 0, and strictly quasiconcave.
The symmetry of the valence shocks means that no party has a valence advantage, which simplifies
our analysis of electoral competition. Strict quasiconcavity together with symmetry implies the
density of the valence shock is maximal at 0. We show later that this assumption implies more
extreme voters are less sensitive to party platforms. Because we assume parties care only about

their expected vote shares, we do not need to specify the joint distribution of valence shocks.

Learning Voters share a homogeneous prior p, conforming to the true distribution, before learn-
ing.” Each voter can acquire any signal structure (Blackwell experiment) about her ideal point at
a cost proportional to mutual information, as in the rational-inattention literature (Sims, 2003; see
also the survey Mackowiak, Matéjka, and Wiederholt, 2023). The information cost captures that
learning takes time and effort. To define mutual information, recall that a signal structure specifies
a conditional distribution over signal realizations given any ideal point. Upon a signal realization,
the agent forms a posterior via Bayesian updating. Thus, a signal structure induces a distribution
over posteriors. Bayesian updating implies this distribution averages to the prior, also called Bayes
consistency. In fact, following the posterior approach (Kamenica and Gentzkow, 2011; Caplin and
Dean, 2013), we can represent signal structures as Bayes-consistent distributions 7 € A(A(R™))

8

over posteriors m € A(R"™).® The mutual-information cost can then be defined as the expected

Kullback-Leibler divergence? of posterior 7 from prior p,

(1) = Er [Dxp(n][p)]- (4)

"In section 3.1, we show Theorem 1 can be extended to allow for ex-ante heterogeneity in beliefs.

8That Bayesian updating imposes only Bayes-consistency of 7 holds for general Polish state spaces, which includes
R™, as a consequence of the disintegration theorem, as shown by Lipnowski and Ravid (2023), Appendix C.2.

9The Kullback-Leibler divergence of 7 from y is defined as

» log (d—") dr  ifrn <
Dics(rl) = {108 8
00 else,
where 9= is the Radon-Nikodym derivative and 7 < ;& means 7 is absolutely continuous with respect to .

dup



Intuitively, the Kullback-Leibler divergence defines a “distance” on beliefs, and mutual information
measures how much the acquired information moves the voter’s belief away, on average, from her
prior according to this “distance.” We assume different voters’ signal realizations are independent.
The cost parameter « in (1), which we vary for comparative statics, translates mutual information
into utils.

For voters to acquire costly information despite never being pivotal among the continuum of
voters, we assume voters engage in exrpressive voting, as is standard in the literature on rationally
inattentive voters (Matéjka and Tabellini, 2021; Hu, Li, and Segal, 2023; Li and Hu, 2023).'°
That is, voters genuinely care about voting for the correct candidate given their true preferences,
for which they are willing to incur an information cost. The reason may be that voters derive a
psychological benefit from doing so or they consider it their civic duty (see also Feddersen and
Sandroni, 2006).

Formally, voter i first chooses information 7; and, after the observation of valence v; and plat-
forms (24, zp), votes for z € {zq,zp} to maximize U;(x, 7;). Dropping indices, the voter’s choice of
information, that is, distribution 7 € A(A(R™)) over posteriors 7 € A(R™) that is Bayes-consistent
(BC), must solve the following problem:

s / (EV [max {IE,r (20, 0)], Ex[u(zs, 6)] + VH — kD (| M)) dr (P)

s.t. /ﬂ'dT =L (BC)

The integrand of (P), which we call the value function, has the following interpretation. Given a
posterior 7, the voter anticipates that for each realization of the valence shock v, they will choose
the maximum out of the expected policy utility of party a, Ex[u(z,, )], and the expected policy and
valence utility of party b, E;[u(xp, §)] + v. Further, they incur a cost proportional to the Kullback-
Leibler divergence Dk, (7||). In Appendix D.2, we establish that an optimal distribution 7 over
posteriors exists, despite the infinite and non-compact state space.

The distribution 7 over posteriors induces a distribution p over posterior means, which are
well-defined by existence of the prior mean. Because voters are ex-ante homogeneous, we assume
all voters acquire the same information 7.!1 Then, given voters’ ideal points and signal realizations

are uncorrelated, the population distribution of revealed ideal points equals p (Uhlig, 1996).!2

OMartinelli (2006) studies information acquisition in large elections assuming the pivotal-voter model. In large
electorates, all voters are nearly uninformed.

1We expect this assumption to be without loss. Even if multiple optimal 7’s existed and different voters acquired
different ones, the resulting population distribution of revealed ideal points should be equivalent to one where each
voters chooses the population-mixture of 7’s. Such a choice of information 7 is also optimal because the posterior-
separable information cost implies indifference to mixing between optima.

12The distribution p is necessarily a mean-preserving contraction of the prior, which has finite second moments, so
p has finite second moments. Thus, the law of large numbers by Uhlig (1996) applies if we interpret the population
distribution p as a Pettis integral.

10



Parties Two parties, a and b, choose platforms, x, and xy, respectively, to maximize a weighted
sum of their expected vote share and their ideological utility.'® Their utilities, U, and Uj, as a
function of platforms, z, and xp, and the population distribution of revealed ideal points p € R",

Unlaosnnp) =m [ (u(z0,8) = ulan, 0)dpl6) + uln.a2) ()
Uilans ) = (1= [ Fofun.0) = ulen,0)do(®)) + uton. ) ()

where m > 0 is the weight on vote share and z7 is the known ideal point of party j € {a,b}. The
probability of voting for a given revealed ideal point 8 is the probability that the valence shock
v does not exceed u(zq,0) — u(xy,8), that is, F, (u(zq,8) — u(xs,0)). The expected vote share is
simply this vote probability integrated over all voters. We assume the parties have different ideal
points, x} # xj, which guarantees platform divergence in equilibrium. Otherwise, voters would

have no incentive to learn, resulting in a trivial equilibrium.

Equilibrium We study pure-strategy perfect Bayesian equilibria. In the last period, voters vote
for their preferred platform given their revealed ideal point and the realized valence shock. Before
that, parties simultaneously choose platforms x, and xp given the distribution of revealed ideology
p induced by voter learning. Voters, in turn, learn optimally anticipating platforms z, and xy.
Equilibria can be characterized by a triple (p, x4, ), where p is the distribution over posterior
means induced by a solution 7 to (P) given (x4, 3), x, maximizes (5) given (p, xp), and z;, maximizes
(6) given (p,x,). Intuitively, revealed voter ideology p results from optimal voter learning given
the anticipated platforms (x4, z3), which optimally respond to each other and to revealed voter

ideology.

2.1 Discussion

Learning about Ideal Points Voter learning about ideal points can be interpreted as (i) intro-
specting on how to value the consequences of policies, (ii) learning about the private consequences
of policies (recall ideal points are private), or (iii) a combination of both. As an example, consider
a voter’s position on income taxation. To determine her optimal tax policy, the voter may want
to introspect on her values for equity versus efficiency, as well as learn about what tax bracket
she is in and what other economic consequences the policy has. We remain agnostic as to which
interpretation should be adopted.

We assume voters can acquire costly information about their ideal points, but they observe party
platforms and a valence signal for free. This approach allows us to make clear what mechanisms
result from endogenous voter learning about ideal points, as opposed to learning about platforms
or valence (for the latter, see Matéjka and Tabellini, 2021; Hu, Li, and Segal, 2023). However, as

13That only two relevant parties exist is typically understood as a consequence of plurality voting systems (Duverger,
1954). For multiple parties, see also Corollary 1 and the discussion after Theorem 2.
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we briefly illustrate in Appendix D.1, our results on voter ideology also hold when voters do not
know platforms but observe a common signal about platforms, based on which they choose how
to learn about ideal points. What is more importantly ruled out by our assumption is that voters

learn jointly about platforms and ideal points, which is an interesting avenue for future research.

Flexible Information Acquisition The rational-inattention approach preserves tractability
while allowing complete flexibility in what kind of information voters can acquire. The flexibil-
ity assumption ensures the optimal signal structure is determined endogenously and not through
exogenous restrictions. In particular, we are not imposing that signals about different policy issues
need to be independent. That is, voters can, for example, acquire a signal that informs them about
whether they are left or right, when aggregating their positions on multiple policy issues. We show
such signals are, in fact, optimal.

The substantive meaning of this assumption depends on which of the above-mentioned interpre-
tations of voter learning we adopt. When we interpret voter learning as learning about values, one
can think of the voter imagining two policies that differ on multiple issues and introspecting on their
relative desirability, similar to drift-diffusion models, widely used in psychology and neuroscience.
By not imposing any restrictions on information, our approach stays true to the original motivation
of rational inattention as modeling the brain as an efficient information processor subject to only
information capacity constraints (Sims, 2003). On the other hand, when we interpret voter learning
as learning about private consequences of policies, another way for such learning to be aggregated
across dimensions is through information intermediaries, as in Hu, Li, and Segal (2023). Voters
may learn about private policy consequences from sufficiently personalized media outlets, such as
news feeds or newspapers catering to specific demographics. Such media outlets may aggregate
information about different policy issues to a one-dimensional signal, as other models of media
assume (Duggan and Martinelli, 2011; Yuksel, 2022; Perego and Yuksel, 2022).

Mutual Information Cost Although we assume the standard mutual-information cost, our
results hold more generally. We use only posterior separability, Blackwell monotonicity, (reflection)-
invariance, and continuity properties of the information cost. A posterior separable cost (Caplin,
Dean, and Leahy, 2022) is linear under mixing between distributions over posteriors, which we
use in our proof of Theorem 1. Posterior separability has foundations from information theory
(Sims, 2003), sequential sampling (Morris and Strack, 2019; Bloedel and Zhong, 2020; Hébert and
Woodford, 2023), and constant marginal cost of experimentation (Pomatto, Strack, and Tamuz,
2023). Blackwell monotonicity means less information, in the sense of a garbling, is less costly.
This property implies agents will not acquire information that does not affect their behavior,
because ignoring such information would be cheaper. Reflection-invariance of the Kullback-Leibler
divergence is used for Theorem 1. In Appendix D.3, we discuss this property further and show it
is satisfied by certain versions of distance-based information costs that the literature has recently
proposed. Our results assuming a normal distribution (Proposition 1 and Theorem 3), use the
stronger property of invariance stemming from information geometry (Amari, 2016; Caplin, Dean,

and Leahy, 2022). Finally, we use lower semicontinuity of the Kullback-Leibler divergence to
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establish existence and continuity results.

Party Objective Our party objective makes two notable assumptions. First, as is common to
the probabilistic voting literature, we assume parties care about their expected vote share instead
of the probability of winning (for examples, see the references in Duggan, 2017). The expected vote
share is in general a less complex object and, under some conditions, equivalent to the probability of
winning.!* Second, we model ideological motivation through an additively separable objective. The
more common approach, following Wittman (1973), assumes parties care about the implemented
policy. Our objective captures in a simpler way a party (or party candidate) that cares both about
votes and about not deviating too far from the parties’ ideology. The advantage of our party
objective is that it provides greater tractability—see our discussion under related literature—while

capturing the main trade-off between vote share and ideology.

3 Voter Learning

We characterize optimal voter learning given equilibrium party platforms, x, and z;, assuming
xq # xp (otherwise, voters will learn nothing). In section 4 on electoral competition, we show
parties indeed choose distinct platforms in equilibrium if the party ideal points are distinct.

This section can be seen independent of the political-economy application, and results apply
analogously to an industrial organization setting with horizontally differentiated goods in a product

attribute space. In that setting, valence shocks can be seen as uncertainty about prices, for example.

3.1 Issue Alignment

Our first result shows the revealed ideal points of voters (their posterior means) are on a line. Thus,
even though the true distribution of ideal points is multidimensional, the revealed ideology in the
population is one-dimensional. By implication, the revealed ideal points are perfectly aligned across
policy issues, which holds even if the true ideal points are independent across dimensions. We show
in section 3.4 the data on voter ideal points indicates that ideal points are on a line (Proposition

2). All proofs are relegated to the Appendix.

Theorem 1 (Issue Alignment). The distribution of revealed ideal points p has support inside the

line through the prior mean with direction ¥ A(xp — x4).

On a high level, the intuition of this result is that only one dimension of the ideal point is
relevant for voting. We outline the logic of the proof of Theorem 1 more carefully for the special case
A =Y = I, namely, that the matrix A associated with the policy utility and the prior covariance
matrix Y are equal to the identity matrix. In this case, the line of voter ideal points is parallel to the

platform difference x, — x4, as in Figure 1. The first part of the proof shows that under quadratic

MPpatty (2002) and Patty (2005) provide conditions for equivalence between maximizing probability of winning and
expected vote share under office-motivated candidates. Yuksel (2022) gives a condition under which probability of
winning equals the expected vote share under ideologically motivated candidates. More generally, one could assume
parties care non-linearly about their expected vote share. We expect Theorem 3 to be robust to this extension.
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Figure 2: Reflection argument underlying the proof of Theorem 1. The dark clouds visualize the
distribution over posterior means.

utility, the instrumental value of information depends only on the projection of the posterior mean
on the platform difference x; — x,.'> For the second part, suppose by way of contradiction that
voters acquired some information such that the induced distribution p over posterior means was
not supported on the diagonal line in Figure 2, (a). The proof constructs through a reflection
argument in three steps a distribution over posteriors that has the same instrumental value but
that is cheaper. For the first step, the voter is indifferent between the original information and

acquiring the “reflected” distribution over posterior means in Figure 2, (b). This distribution is also

15This statement holds also if voters anticipate valence shocks, because the utility difference between platforms,
which depends on said projection only, is still a sufficient statistic for voting. It also holds, when instead of valence
shocks, voting-cost shocks are present, provided they induce what is called abstention due to indifference (e.g. Led-
yard, 1984) and not abstention due to alienation (Smithies, 1941). In the former case, the utility difference between
parties is again a sufficient statistic for behavior, because agents vote if the utility difference exceeds the voting cost.
Under abstention due to alienation, voters care not only about the relative but also about the absolute utility from
parties, so they would be motivated to learn how far they are from the closer party platform.
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Bayes-consistent due to the spherical prior. It induces the same projection of the posterior mean on
the platform difference (or equivalently, on the diagonal line) and hence has the same instrumental
value.'® And the Kullback-Leibler divergence is invariant under coordinate transformations, so
reflections preserve the cost of information. For the second step, because the voter’s information
cost is posterior separable, she is indifferent to mixing between equivaluable distributions over
posteriors and hence to acquiring the mixed distribution in Figure 2, (c), instead. For the third
and last step, the voter prefers to acquire the distribution in Figure 2, (d), which presents a mean-
preserving contraction of the mixed distribution and hence a garbling of the information. Thus,
this distribution is cheaper to acquire while having the same instrumental value, because it has
the same projection of posterior means on the platform difference. By symmetry of the mixed
distribution constructed by the second step, the mean-preserving contraction in the third step
results in a distribution supported on the line through the prior mean with direction z, — z,.

Theorem 1 is related to but distinct from two other results in the rational-inattention literature
that can explain a reduction of dimensionality: learning about the partition of payoff-equivalent
states only and the so-called water-filling algorithm.

Under rational inattention with an entropy-based cost, agents learn only about the partition
of payoff-equivalent states (Sims, 2003; Caplin, Dean, and Leahy, 2022), which implies agents
neglect payoff-irrelevant dimensions. This result does not necessarily hold when the information
cost depends on the distance between states, as in recent contributions to the literature (Hébert
and Woodford, 2021; Pomatto, Strack, and Tamuz, 2023). A concern about a result based on this
mechanism is that it may require that voters are able to differentiate well between arbitrarily close
states. By contrast, our proof builds on reflection-invariance of the information cost and holds
for some plausible distance-based information costs as well.!” Furthermore, we show the induced
distribution over posterior means is supported on a certain line, which makes predicted survey
behavior indistinguishable from that under a one-dimensional policy space (Proposition 2), as used
in much of formal political economy.

Theorem 1 is also reminiscent of the water-filling algorithm, which applies in linear-quadratic
Gaussian tracking problems, that is, decision problems where agents choose a continuous action
r € R” to track the state § € R™ under a quadratic loss, u(z,0) = —(z — )T A(z — 6), and a
normal prior (Kdszegi and Matéjka, 2020). According to the water-filling algorithm, attention is
allocated to a subset of dimensions according to a particular order of priority, which is determined
by how payoff-relevant these dimensions are. Further, the agent pays attention to more dimensions
when the attention cost is lowered. By contrast, in our case, agents learn about at most one

dimension, regardless of the information-cost parameter, because this dimension is sufficient for

6For general & and A, we construct a reflection that preserves both the elliptical prior and the payoff-relevant
projection on the platform difference x, — x, with respect to A.

1"We show in Corollary 6 in Appendix D.3 that Theorem 1 holds for appropriate versions of the posterior-variance,
neighborhood-based (Hébert and Woodford, 2021), and log-likelihood-ratio (Pomatto, Strack, and Tamuz, 2023) costs,
which are all distance-based. The important condition is that the information cost is preserved under reflections that
preserve the prior. Thus, our result does not allow for comparative statics under changing the information-cost
distance and the prior separately.
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decision-making purposes. The reason is that, in contrast to tracking problems, in our model, the

agent can choose only from a discrete subset of the vector space.

Robustness and Extensions Theorem 1 is robust to several generalizations. The proof works
for any distribution of valence v, under correlated ideal points across voters, and under a heteroge-
neous information cost parameter x in the population if x is independent of ideal points (otherwise,
voters could infer something about their ideal points from observing x). Although our stark result
relies on ex-ante homogeneity of voters and the existence of only two parties, appropriate extensions
hold when we drop these assumptions.

First, the analysis can be extended to heterogeneous priors. One way to model heterogeneous
priors is to suppose voters start with some homogeneous prior but obtain exogenous signals before
learning, which creates heterogeneous interim beliefs. In particular, suppose voters have a normal
prior and obtain normal signals S; = 6; + ¢;, where the noise term &; has a common normal
distribution and is independent of ;. Then, the interim beliefs after observing the exogenous
signals are normal, that is, elliptical, with a covariance matrix that is common to all voters. Thus,
Theorem 1 applies and all voters learn in the same direction. This implies learning does not
change the marginal of the distribution of revealed ideal points on the hyperplane orthogonal to
the direction Y A(xp — x,). By contrast, the marginal on the line increases in the mean-preserving
spread order through learning. Thus, learning simply “stretches out” the distribution of revealed
ideal points in the direction ¥ A(x, —x,) and does not increase the mean-squared error of predicting
voter ideal points through their projection on said line.

Second, the result can be generalized to more than two parties. First, under plurality rule, in a
Duvergerian equilibrium where voters decide between the two front-runners, our mechanism would
still apply.'® Second, under electoral rules featuring proportional representation instead of plurality
rule, expressive voting may remain a good assumption. Maintaining expressive voting and assuming
k > 2 parties, we show by an analogous reflection argument that voters’ ideal points lie on an at
most (k — 1)-dimensional hyperplane. If k& platforms were to lie on a line, however, voter ideology
would still be one-dimensional.'® If the platforms lie in general position, the model predicts that
the dimensionality of voter ideology is increasing in the number of parties. Unfortunately, we are

not aware of any systematic evidence regarding this prediction.

Corollary 1. If voters face k party platforms, the distribution of revealed ideal points p has support

inside a subspace of dimension at most k — 1.

This result aligns with evidence from Western European countries, which have more than two
parties and where a two-dimensional political space is needed to capture party and voter positions
(Kriesi, Grande, Lachat, Dolezal, Bornschier, and Frey, 2006; Kriesi, Grande, Lachat, Dolezal,

18 Although we assume expressive voting, strategic voting does not undermine our result under private values as
long as voters perceive a positive probability of being pivotal.

9The dimensionality of voter ideology may also be strictly smaller than the number of parties minus 1 if voters
neglect some party (e.g., because it is too far away from their prior mean) in their learning problem. In the terminology
of Caplin, Dean, and Leahy (2019), this happens if a party is not in the voter’s consideration set. It follows that the
dimensionality of voter ideology is less than or equal to the size of their consideration set minus 1.
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Bornschier, and Frey, 2008; Bornschier, 2010a; Bornschier, 2010b; however, see Van Der Brug and
Van Spanje, 2009).

3.2 Polarized Ideology

Our second main result shows that without uncertainty about valence, the optimal signal structure
induces a binary distribution of revealed ideology. This result holds even if the true distribution
of ideal points is continuous and unimodal. With uncertainty about valence, this result does not
necessarily hold, but we show for “small” valence shocks, the distribution of revealed ideal points

is “almost” binary.

Theorem 2 (Polarization). Absent valence shocks, voters’ revealed ideal points are supported on
at most two points. If the distribution of the valence shock converges in mean to zero, any selection

of optimal distributions over revealed ideal points converges weakly to a binary distribution.

Without valence shocks, voters only want to learn what party they are closer to. In other
words, the voter faces a binary decision problem after learning. In rational-inattention problems
with k actions, an optimal signal structure that induces at most k distinct posteriors is known to
exist.?’ The reason is that if the agent acquired more posteriors—and thus signals—than actions,
they could garble the signal structure based on the action recommendation. This garbling would
maintain the instrumental value of information while saving on the information cost, because the
garbling leads to a Blackwell-dominated signal structure.

To our knowledge, the rational-inattention literature has not emphasized the implication of
this result for polarization. Under rational inattention, the necessity to take an action makes
agents learn about their preferences in a way that divides them into discrete groups, one for each
action—or, in our case, one for each party. In fact, this mechanism holds under flexible information
acquisition for any strictly Blackwell-monotone information cost, that is, for any cost that makes
a strict garbling of the signal structure strictly cheaper.

When valence shocks realize after learning, they effectively enlarge the choice set and break the
mechanism for binary learning. The choice set is larger because the voter can now decide for each
realization of valence v who to vote for. Or, equivalently, voters now care about learning how much
they prefer one party to the other. Such learning informs them for what size of the valence shock
they should start voting for party b. This results in a continuous rational-inattention problem,
which generally do not have closed-form solutions (Jung, Kim, Matéjka, and Sims, 2019).

However, Theorem 2 shows a continuity result for valence shocks close to degenerate. If the
valence shock converges in mean to zero, the distribution over revealed ideal points converges to a
binary distribution. This result implies that for any two open neighborhoods of the two points of
the binary distribution, as valence converges to zero, the mass of these two neighborhoods converges
to 1. That is, for small-enough valence, almost all revealed ideal points will be very close to one of

the two points, so we can talk essentially of a bimodal distribution.

20For the Shannon-entropy cost, the result has been observed by Sims (2003). In Bayesian persuasion, it has been
observed by Kamenica and Gentzkow (2011).
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To show the continuity result, we prove a more general continuity result for information design
problems in Appendix D (Proposition 7). Proposition 7 applies to any information design problem
with state space R™ and an upper semicontinuous value function that is bounded from above. It
establishes that the solution is upper hemicontinuous in the topology of weak convergence under
uniform convergence of the value function, which may be useful beyond our application. The proof
of Proposition 7 is complicated by the fact that, unlike existing result (Caplin, Dean, and Leahy,
2022; Dworczak and Kolotilin, 2023), we do not restrict ourselves to a finite or compact state
space. Moreover, we cannot assume a continuous value function, because with an infinite state
space, the Kullback-Leibler divergence is only lower semicontinuous rather than continuous. We
show that using a generalization of Berge’s maximum theorem due to Tian and Zhou (1992), we
can nonetheless obtain our result. Our result shows a sense in which it is not true that “similar
decision problems may lead to sharply different [behavior|” (Jung, Kim, Matéjka, and Sims, 2019),
which is reassuring for the theory of rational inattention.

Comparing our result with the well-studied tracking problems in the rational-inattention lit-
erature, introduced above, is again instructive. Under quadratic loss and normal prior, the agent
is known to optimally acquire a normal signal, resulting in a normal distribution over posterior
means that, of course, cannot be bimodal. Although the presence of continuous valence shocks
makes voters’ choice set effectively continuous, the utility is not quadratic in the distance of action
and state, which allows for a bimodal distribution over posterior means. Relatedly, Jung, Kim,
Matéjka, and Sims (2019) show in tracking problems, when the utility depends on the distance
between the action and the state but not in a quadratic way, agents will often choose from a dis-
crete set of actions only. In our case, the utility is not a function of the distance between action
and state, so their result does not apply. Instead, the bimodality is driven by the existence of two
underlying options, as explained above.

Two related results study belief polarization over a common state. Nimark and Sundaresan
(2019) show that the beliefs of a population of rationally inattentive agents can become polarized
over time, as agents information acquisition is path-dependent. Eguia and Hu (2022) show beliefs
can become polarized if agents are boundedly rational in the sense of a finite memory and have
heterogeneous preferences. Our result that revealed voter ideal points are binary without valence
also holds if ideal points are common. We expect that the continuity result also generalizes, but this
part requires additional work. By comparison to above papers, we show a polarized distribution

can result without ex-ante heterogeneity and dynamics or bounded rationality.

3.3 Comparative Statics

Broadly speaking, polarization of a distribution is understood as capturing how bimodal and how
spread out the distribution is (Esteban and Ray, 2012). We have shown above flexible information
acquisition predicts bimodal ideology when valence shocks are small. Here, we show how a smaller
cost of information or more distant party platforms can polarize voters, in the sense of leading to

a more spread out distribution of revealed ideal points. We use this comparative statics result for
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our third main result, Theorem 3.

For the comparative statics result, we assume a normal prior and restrict voter learning to
normal signals while maintaining that the information cost is proportional to mutual information.
Formally, we define a normal signal as a random vector S such that (.5, ) is jointly normal. We make
this simplification because comparative statics under flexible information acquisition are notoriously
difficult due to the high dimensionality of the signal choice.?! By contrast, under the restriction to
normal signals, and because voters learn only in a one-dimensional way, their candidate signals are
completely Blackwell-ordered, which we exploit for the proof.

For this comparative statics result, we also assume the party platforms are equally distant
from the voter’s prior mean under the distance relevant to voter preferences, JraTAma = beA:cb, an
assumption we revisit in section 4.1. We formalize this by supposing that party platforms (z4, )
are a scaled version of (z,v), (24, 2p) = a(z,y), with 2" Az = y" Ay. We vary the scalar a, which

we call the degree of platform polarization.

Proposition 1 (Comparative Statics). Restrict the prior u and feasible voter signals to be normal
and let (zq,xp) = (x, ay) with o € R>g. The variance of the optimal distribution of revealed ideal
points strictly increases in the strong set order when the information cost parameter k decreases

and when the degree of platform polarization o increases.

Because the optimal signal structure may not be unique, the comparative statics result is
expressed in terms of the standard strong set order. The intuition is as follows.

First, smaller k or larger a encourage voters to acquire more information. As information
becomes cheaper, voters learn more by supermodularity of their objective in the parameter x and
the cost of information ¢(7), using the fact that the candidate signal structures are completely
Blackwell ordered. If party platforms were very close to each other, it would not matter much for
voters who to vote for, so they would learn little about their ideal points. As party platforms are
more polarized, voters face larger stakes in the election and acquire more informative signals.

Second, more information leads to a distribution of voter ideal points with higher variance.
While one might expect that more information leads to more agreement, here it leads to more
disagreement simply because voters learn about their idiosyncratic ideal points. A more informative
signal leads to a mean-preserving spread of the distribution of posterior means. Because voters
learn about their independent ideal points, this translates to a mean-preserving spread of revealed
ideology. We show, after the proof of Proposition 1 in Appendix D, that this conclusion is robust
to some correlation between ideal points through a common component. The result is robust as
long as the variance of the common component is smaller than the variance of the idiosyncratic

component.

2yoder (2022), who provides a comparative statics result under a small state space, notes that the value and cost
of information need not be quasisupermodular in 7, so one cannot apply the comparative statics by Milgrom and
Shannon (1994). See also the discussion in Curello and Sinander (2024) on costly information acquisition, which
shows that even under posterior-mean separable information costs, increasing comparative statics hold only under
very special conditions.
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The prediction that more information leads to greater polarization is consistent with evidence.
Palfrey and Poole (1987) develop an index of voter information and find more informed voters tend
to be more extreme. Abramowitz and Saunders (2008) and Abramowitz (2010) find that more
educated and engaged voters are more ideologically extreme. Lauderdale (2013) provides causal
evidence that increasing information leads to ideological polarization. We discuss the evidence on
the comparative statics regarding platform polarization in section 3.4.3.

A sizeable literature studies how information can lead beliefs about a common state to diverge.
The beliefs of agents with heterogeneous priors can diverge when observing a common signal, due to
ambiguity aversion (Baliga, Hanany, and Klibanoff, 2013) or uncertainty about the signal structure
(Acemoglu, Chernozhukov, and Yildiz, 2016). Novék, Matveenko, and Ravaioli (2024) also studies
rationally inattentive agents, but with a common prior and heterogeneous preferences for the status
quo in a binary decision problem. They show beliefs may diverge in expectation, conditional on the
true state of the world, as agents acquire different signal structures. In contrast to these papers,
our agents learn about idiosyncratic states, namely, their independent ideal points. However, as
mentioned above, our monotone comparative statics would also hold in the presence of a common
component of ideal points, provided the variance of the common component is smaller than the
variance of the idiosyncratic component. Our focus on idiosyncratic ideal points is motivated by
our application. While above papers aim at explaining persistent disagreement about facts, we
focus on political positions, which are naturally heterogeneous due to conflicting interests. We
therefore take seriously that voters need to learn about idiosyncratic factors affecting their political
positions. This provides a simple and natural explanation of how information leads to increasing

spread of voter ideal points.

3.4 Evidence

We relate our results to the existing evidence on voter ideology.

3.4.1 Issue Alignment

Recent evidence shows that the ideology of US voters is approximately one-dimensional (Jessee,
2009; Jessee, 2012; Tausanovitch and Warshaw, 2012; Shor and Rogowski, 2018; Fowler, Hill, Lewis,
Tausanovitch, Vavreck, and Warshaw, 2022; Hare, Highton, and Jones, 2023). These studies use
voter surveys, such as the American National Election Studies, to estimate voter ideal points,
similar to the ideal point estimation of legislators from roll-call data (Poole and Rosenthal, 1985).
Specifically, these studies estimate a one-dimensional spatial model with quadratic utility to predict
the binary responses y;; € {0,1} of each individual i to each question j (e.g. should the minimum
wage be raised).?? According to the model, the likelihood is Pr(y;; = 1) = ®(u(zj1,6;) —u(zj2,6;)),

22T6 be even more precise, these models estimate one-dimensional item-response theory models, which are known to
be equivalent to one-dimensional spatial models with quadratic utility (e.g. Ladha, 1991). The only exception is Hare,
Highton, and Jones (2023), who use a different methodology but also conclude that voter ideology is approximately
one-dimensional.
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where ® is the logistic or normal cumulative distribution function and utility is quadratic, u(x, ) =
—(z — 0)%2. The to-be-estimated parameters are the ideal points §; € R of each individual i and
the positions x1, 22 € R of the policies corresponding to two responses of each question j (e.g. a
minimum wage raise and the status quo). This is a standard logit or probit discrete choice model,
where a voter responds more likely with the policy closer to their ideal point. These studies find
that such a one-dimensional model explains voter responses well (typically about 80% of binary
responses) and that adding more dimensions only marginally increases the explanatory power of the
model. They conclude that ideology is well described by a one-dimensional ideological spectrum.??

Upon closer examination, it is not clear whether the prediction of Theorem 1 aligns with the
evidence that survey responses are well explained by a one-dimensional spatial model. First, would
it not be sufficient for voter ideal points to be on some one-dimensional curve for a one-dimensional
spatial model to explain voter’s survey responses? In that case, Theorem 1 would be proving too
much. Second, does equivalence to a one-dimensional spatial model require not just that the ideal
points but also the policies are in a one-dimensional space? Theorem 1 predicts one-dimensional
ideal points within a multidimensional policy space, while in one-dimensional spatial models both
the ideal points as well as the policies live in a one-dimensional space. If the answer to the second
question is affirmative, then Theorem 1 would be proving too little to explain the evidence.

In the following, we show neither is the case and Theorem 1 proves the property of voter ideology
identified by the evidence, namely the property that ensures that voters’ survey responses can be
explained by a one-dimensional spatial model.

First, we need additional definitions. A multidimensional spatial model with quadratic utility is
defined identically to the one-dimensional spatial model described above, except for the parameters
{0;,2j1,7j2} being elements of R™ and u(z,0) = —(z — )" (x — 0) being the multidimensional
analogue of quadratic utility.2* It turns out that the property of a multidimensional spatial model
identified by the evidence is that respondents’ ideal points are on a line when projected onto the
space spanned by the survey questions. Formally, this property states that there exist \; € R,
Af € R" and ;- € R™, such that

Vi: 0; = 01 + A + 0;,

Vi,j: (a:jl — {L'jQ)TQZ-J' =0.

23This finding stands in contrast to the older literature, starting with Converse (1964), which studies correlation
between voter responses to different policy questions instead of estimating ideal points. These papers typically find
low correlation and conclude that ideology not well represented by a one-dimensional spectrum, or that there is
little constraint on voter ideology in the terminology of Converse. Later research has found that this conclusion
is partly driven by response mistakes such as arising from inattentiveness of respondents, which reduce correlation
(Ansolabehere, Rodden, and Snyder, 2008). Further, the literature seems to have overlooked another reason for why
the correlation between responses is a poor measure of to what extent voter ideology is one-dimensional. Even if
voters respond to questions according to a one-dimensional spatial model, they may not consistently give left or
right responses but respond with whichever response option is closer to their ideal point. In the one-dimensional
spatial model, the response to question j depends on whether the voter’s ideal point 6 is below or above the question
midpoint 3 (x;1 4 z;2). If different questions have different midpoints, the voter would be expected to choose the left
or right response depending on the question.

24The result remains the same if we assume a general quadratic form wu(z,8) = (z — )" A(z — 8) because we can
switch to an orthonormal basis of A.
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That is, each ideal point 6; is on the line through 6; with direction Af, modulo a component Qf
that is orthogonal to the policy-differences x ;1 — 2 for each question j. We say that a multidimen-
sional spatial model with (n-dimensional) parameters {6;,z;1,z2} is observationally equivalent to
a one-dimensional spatial with (one-dimensional) parameters {6;, Zj1, 242} if they predict the same

likelihood Pr(y;; = 1) over survey responses for all ¢ and j.

Proposition 2. Under quadratic utility, a multidimensional spatial model is observationally equiv-
alent to some one-dimensional spatial model if and only if the multidimensional ideal points are on

a line when projected onto the space spanned by the survey questions.

Proposition 2 shows ideal points being on a line (when projected onto the space spanned by the
survey questions) is the property of ideal points that makes survey behavior explainable by a one-
dimensional spatial model. The parenthesized caveat holds because, naturally, survey responses are
not affected by policy dimensions that are orthogonal to all survey questions. Because voter surveys
try to cover most relevant policy dimensions, we take this caveat to be of limited importance. Since
the above-mentioned papers show voters’ survey responses are well-explained by a one-dimensional
spatial model (and not much better by higher-dimensional models), we conclude they confirm the
prediction of Theorem 1.

The high-level intuition for Proposition 2 is as follows. For the “only if”-direction, suppose voter
ideal points were not on a line but, say, on a U-shaped curve. Then, the extreme voters on both
sides of the U may prefer some policy to a policy at the bottom of the U, that is preferred by the
centrist voters. Such non-monotonic behavior is ruled out by one-dimensional ideological spectrum.
For the “if”-direction, for any survey question, one can find suitable projections of its two policies

onto the voter line that do not change predicted behavior and make the model one-dimensional.

3.4.2 DPolarized Ideology

Whether voters are ideologically polarized, that is, have a bimodal distribution, has lead to an
academic debate between Abramowitz and Saunders (e.g. Abramowitz and Saunders, 2008) on the
affirmative side, and Fiorina, Abrams, Pope, and Levendusky (e.g., Fiorina and Abrams, 2008)
on the other (see Lelkes, 2016 for a critical overview of the debate). Unfortunately, neither side
of the debate estimates voter ideal points but only uses “raw” survey evidence, so it is not clear
how to interpret their findings. For example, much of the evidence against ideological polarization
stems from evidence on ideological self-placements on 7-point scales (e.g. Fiorina and Abrams,
2008). These validity of ideological self-placements has been criticized for several reasons but the
literature has, to our knowledge, overlooked a more fundamental problem. A 7-point scale is a
categorical, ordinal scale. To assess the bimodality of the distribution of voter ideology, a cardinal
scale is needed. The reason is that one can always monotonically transform the scale to make a
distribution bimodal or unimodal. An ideological 7-point scale is only meaningful if one assumes the
7 categories correspond to intervals of the same size on the appropriate cardinal scale of ideology,

for which the authors provide no evidence. This underlines the importance of estimating ideal
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points from survey responses to multiple questions, as this results on ideal points on a meaningful
cardinal scale. On the other hand, the evidence for polarization relies on measures of individual-
level correlation between left and right responses to different policy questions (Abramowitz and
Saunders, 2008). However, without estimation of ideal points it is not clear whether their findings
relate to issue alignment or polarization of ideology.

Several newer papers do, however, estimate voter ideal points from survey responses. Bafumi
and Herron (2010) find a bimodal distribution of voter ideal points, while most papers find a
unimodal distribution (e.g., Jessee, 2012; Hill and Tausanovitch, 2015; Dun and Jessee, 2020).
However, there are reasons to believe that current estimation algorithms underestimate ideological
polarization of voters. Survey respondents who do not pay much attention to the survey are arti-
ficially placed in the middle of the distribution, because this best explains their random responses
(McCarty, 2019, 204). Indeed, when Fowler, Hill, Lewis, Tausanovitch, Vavreck, and Warshaw
(2022) screen for inattentive respondents (and for respondents that are not well-represented by a
one-dimensional ideal point), they find a more bimodal distributions of ideal points in most survey
years. Moreover, Abramowitz (2010) finds the distribution of actual or engaged voters is more

polarized. We conclude that the matter is not settled yet.

3.4.3 Party Influences on Voter Ideology

Political scientists have long argued that mass opinion is heavily influenced by the elite political
discourse (Zaller, 1992; Lenz, 2012), yet the underlying mechanisms remain debated (Leeper and
Slothuus, 2014). Our model provides a mechanism through which both issue alignment and po-
larization of voters is affected by parties. Perhaps surprisingly, this mechanism is consistent with
voter rationality.

Specific to issue alignment, Malka, Lelkes, and Soto (2019) write “political scientists generally
agree that [issue alignment] among politically attentive citizens results from such citizens following
elite political cues.” This idea is also motivated by findings such as that the meaning of left and
right changes over time and space, in congruence with party positions (Inglehart and Klingemann,
1976). For example, whether protectionism is associated with the left or right in the US has evolved
over time (McCarty, 2011). Theorem 1 predicts the orientation of the ideological spectrum, that
is, YA(zp — x4), is determined by party platforms, x, and x,. As argued in the introduction, this
orientation determines what issues go together.

Implicit in the understanding by Malka, Lelkes, and Soto (2019) is that the issue alignment
among voters is consistent with relative party platforms. That is, for example, if one party is more
left on economics and more liberal on social issues than the other party, then voters who are more
left are also more liberal. More precisely, we say issue alignment is consistent with party platforms
if the sign of the k-th component of relative party platforms, x;, — x4, equals the sign of the k-th
component of the orientation of the ideological spectrum, Y A(zy — x,), for all k = 1,...,n. Then,
for any two dimensions the alignment of relative party platforms conforms to the issue alignment

of voters. While this is not a necessary prediction of our model, it holds in important special cases.
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If xp — x4 is an eigenvector of 3 A, then the ideological spectrum is exactly parallel to the platform
difference z, — x4, so issue alignment is consistent with party platforms. In section 6, we give a
microfoundation for x; — x, being an eigenvector of ¥ A if party objectives are driven by valence
competition. This alignment may also occur in a richer model in which party ideology arises from
the ideology of voters who are party members, resulting in party platforms that are on the line of
voter ideal points. If the covariance matrix Y of true ideal points and the matrix A associated with
the policy utility are both diagonal, the issue alignment is also consistent with party platforms.?
Diagonality holds if voter positions on different policy issues are uncorrelated and there are no
preference interdependencies between issues. Broadly speaking, as long as such correlations and
interdependencies are not strongly enough misaligned with relative party positions, issue alignment
should be expected to be consistent with party platforms.

Regarding polarization, Proposition 1 shows how platform polarization can lead to polarization
of voters. This is not because voters blindly follow party positions but instead as a consequence
of rational learning. Again, the political environment can affect revealed ideology even when true
ideology remains unchanged. This is consistent with the finding of Bischof and Wagner (2019) that

voters ideal points diverge immediately after new radical parties enter parliament.

4 Electoral Competition

We are interested in welfare properties of the equilibrium platforms, from the viewpoint of voters’
policy utility. For voters, it is crucial how much parties polarize their platforms, moving away from
the policy that maximizes voter’s aggregate policy utility. Before we turn to this question in section
4.1, we highlight some important forces at place in electoral competition, holding voter preferences
fixed.

Recall that parties choose their platforms, z, and xp, in a Nash equilibrium of the electoral-
competition game given the distribution p of voters’ revealed ideal points. It is typically hard to
obtain characterizations of equilibrium platforms when parties are motivated both by vote share
and ideology. However, our party objective, which is linear in vote share and ideological utility,
allows such a characterization. The following lemma shows (1) party platforms are a weighted mean
of voter and party ideal points, and (2) the weight on a voter is decreasing in the “extremeness” of

the voter. We use these properties subsequently and relate them to platform polarization.

Lemma 1. In any equilibrium, party platforms are a weighted average of voter and party ideal

points,
—m [w(0)8dp(6) +
o = m [w(0)dp(0) +1 (™)
s — mmff edp(g :[fb (8)

BIf ¥ = diag(Z11, ..., Zon) and A = diag(Ai1, ..., Ann), with 211, ..., Znn, A11, ..., Ann > 0 by positive definiteness,
the k-th component of X A(z, —x4) is simply gk Agk (To,k —Ta,x), which has the same sign as xp p —xar for k=1,...,n
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where
w(0) = fy(u(2a,0) — u(zp,0)).

The result generalizes the mean-voter theorem by Hinich (1977), which assumes purely office-
motivated candidates. The mean-voter theorem states that under quadratic voter utility and prob-
abilistic voting, party platforms converge at the mean of voter ideal points. Because parties are
office- and ideologically-motivated in our model, their platforms are affected by voter ideal points
as well as the party’s own ideal point in an intuitive way.

In particular, by symmetry of f,, the weight w(#) on a voter with ideal point 6 depends only
the size of the utility difference between party platforms, |u(zq,0) — u(zp,0)|. Voters that have
a larger utility difference can be seen as more “extreme” or “ideologically entrenched” relative to
the party platforms. By strict quasi-concavity of f,, a voter with a larger utility difference has a
smaller weight w(#). Intuitively, more extreme voters are less sensitive to platform changes (the
probability that they change their vote due to a small platform change is small), so they have less
influence on equilibrium platforms. While this observation is not new (Persson and Tabellini, 2002,
57), most models of probabilistic voting rule this effect out by focusing on a uniform distribution
of valence shocks to improve tractability. We use this observation later to show voter polarization
amplifies platform polarization: If voters are more extreme on average, parties moderate less and
choose policies closer to their own ideal points. This mechanism is consistent with the finding by
McCarty, Rodden, Shor, Tausanovitch, and Warshaw (2019) that more ideologically heterogeneous
districts have more extreme legislators.?%

Lemma 1 only speaks to necessary conditions of equilibrium platforms, as derived from first-
order conditions. Hence, additional work is necessary to show that equilibrium candidates that
satisfy the first-order conditions constitute actual equilibria. For example, they constitute equilibria
if the party objectives are quasi-concave, in which case the first-order conditions are sufficient for
optimality. Along these lines, in Appendix D.7, we give a condition that ensures that our equilibrium
candidates in the context of Theorem 3 are equilibria. We also show this condition is satisfied when
the weight m on vote share is small enough or when the valence shock v is large enough, echoing
observations by Lindbeck and Weibull (1987) and Enelow and Hinich (1989).

4.1 Platform Polarization

To illustrate the mechanisms underlying platform polarization, we simplify to a symmetric setup.
A symmetric setup is obtained when the party ideal points z; and xj are equally far from the
origin according to the distance relevant to voter preferences, x*7 Az} = azZTAa:g. We show below
under this assumption all equilibria are symmetric in the following sense. We say (p, 24, zp) is a
symmetric equilibrium if

(T, 2p) = (g, o)

26McCarty, Rodden, Shor, Tausanovitch, and Warshaw (2019) interpret this finding through the Calvert-Wittman
model, in which greater uncertainty about the location of the median voter leads to greater platform polarization.
They theoretically connection voter polarization to uncertainty about the median voter through the informativeness
of a public poll. Our model provides a more direct mechanism.
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Figure 3: Symmetric equilibrium with party platforms (z,, x;) and party ideal points (7, x})

with € (0,1), which we call the degree of platform polarization. Theorem 3 below identifies
comparative statics for the degree of platform polarization « as the information cost parameter k
changes. Figure 3 visualizes an example of a symmetric equilibrium. Note that a higher degree of
platform polarization not only increases the distance between party platforms but also makes party
platforms move further away from the ideological spectrum of voter ideal points.

Bringing together endogenous voter ideology and endogenous party platforms, we show the
following result. We restrict again to normal distributions to make use of the comparative statics
result Proposition 1. Because voter and platform polarization are mutually reinforcing, there may
be multiple equilibria, which we order by their degrees of platform polarization «. Therefore, as

usual, our comparative statics are expressed in terms of the smallest and largest equilibrium.

Theorem 3. Restrict the prior i and feasible voter signals to be normal. There exists an equilib-
rium and every equilibrium is symmetric. Cheaper information increases polarization: The smallest

and largest equilibrium degree of platform polarization o weakly increase as k decreases.

Theorem 3 combines our earlier results on voter ideology and on party platforms. To prove the
theorem, we show voter polarization and platform polarization are mutually reinforcing: if voters
are more extreme, their voting is less sensitive to party platforms, allowing parties to polarize more
(Lemma 1). If platforms are more polarized, then voters face larger stakes in the election, inducing
them to learn better and become more extreme (Proposition 1). One can think of cheaper infor-
mation to start this self-reinforcing process by allowing voters to learn at a lower cost (Proposition
1). On a formal level, we establish existence of pure-strategy equilibria and the comparative statics
result, through monotonicity arguments similar to those in supermodular games (despite our game
not being supermodular).

The theorem implies better availability of information makes the equilibrium policy worse for

voters. Platform polarization hurts voters in our model because the utilitarian optimum for voters
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is the policy coinciding with the mean ideal point, which is at the origin. A higher degree of
platform polarization, «, implies that any implemented policy (z, or x;) moves further away from
the origin, decreasing voter’s aggregate policy utility. While cheaper information allows voters to
learn more accurately about their ideal points, this makes voters less responsive to party platforms,
leading to greater platform polarization. Voters do not internalize this information externality of
their learning strategy on party platforms because each voter is infinitesimal.

Theorem 3 underscores the different implications of learning about preferences versus learning
about equilibrium actions of other agents. Matéjka and Tabellini (2021) show more informed voters
are more responsive to party platforms, when voters learn about party platforms knowing their ideal
points. This would suggest decreasing platform polarization in equilibrium as information becomes
more accessible. By contrast, in our model, better informed voters are more extreme and therefore
less responsive to party platforms. Furthermore, we show in section 5 this difference is not due
to our timing assumption. In a symmetric equilibrium, the vote share is less responsive to the
platform choice under cheaper information, also if parties publicly commit to their platforms before
voters learn about their preferences.

The theorem demonstrates one mechanism that may have contributed to increasing party po-
larization in the US, as observed in the past decades (McCarty, Poole, and Rosenthal, 2016).
Information can become cheaper due to advances in information technology, such as the internet.
Theorem 3 shows better availability of information can lead to more platform polarization. The
underlying mechanism operates through increasing polarization of voters. While the empirical evi-
dence on increasing polarization of US voters is somewhat mixed, it suggests that voter polarization
may have increased more recently. Hill and Tausanovitch (2015) find that the variance of US voter
ideal points is generally stable from 1956 to 2012, but their point estimates for variance increase
after the year 2000.2" The Pew Reseach Center (2014) find similar spread of voter position in 1994
and 2004 but a significant increase in 2014. Thus, one may take Theorem 3 to suggest a contributor

to platform polarization in the post-2000 era.

4.2 Aggregate Uncertainty

Until now, we have assumed that there is no aggregate uncertainty about voter preferences. There-
fore, the optimal policy was always at the mean of voter ideal points, that is, the origin. In general,
however, the optimal policy may depend on such aggregate uncertainty. This opens up the new
question whether under endogenous voter learning, elections aggregate preferences, in the sense of
making policy responsive to aggregate uncertainty. We show a novel failure of information aggrega-
tion: because voter learning is one-dimensional, policy responds to only one dimension of aggregate
uncertainty.

We model aggregate uncertainty about voters’ ideal points through an aggregate state w, which

enters voters ideal points as a common component. The ideal point of voter i is ; = w+4d;, where the

2"Moreover, in subsequent unpublished work, they find more evidence of increasing polarization in the post-2012
data, but the conclusion depends on the measure and statistical model (personal communication).
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idiosyncratic components {d;} are identically distributed and (w, {d;}) are jointly independent. For
our result in this section, we do not need to impose elliptical distributions for w and ;. However,
to simplify the proof of equilibrium existence and because it comes with little loss of economic
substance, we assume the support 2 of w and the support D of §; are finite. We allow voters 4
to acquire any signal structure about (w,d;) and maintain the assumption that all voters acquire
the same signal structure. Formally, each voter i € [0,1] chooses a signal structure, that is, a
stochastic kernel o; : @ x D — A(S) that maps each state (w, d;) into a distribution over signals of
a sufficiently rich signal space S.2® We understand the common component w as a way to model
aggregate uncertainty about voter preferences and assume that it does not affect party ideal points.

For parties to be able to respond to realized voter preferences, they must obtain information
about voter preferences. If parties had private information about the realized distribution of re-
vealed voter ideology, then platforms could convey information about the common component w to
voters. This would introduce a signalling motive into electoral competition (see Martinelli, 2001).
However, since this signaling motive is not the focus of our analysis, we assume instead that both
parties and voters observe a public signal s € S about voter preferences. This public signal could
represent a poll or, more generally, any channel through which information about public opinion is
disseminated.

Formally, the public signal is a stochastic kernel o, : A(S) — A(S) that maps the realized
distribution over voters’ private signals into a distribution over public signals. As the public signal
depends only on the distribution of voters’ private signals, the realization of the public signal
cannot be affected by a single infinitesimal voter. To show equilibrium existence, we assume the
public signal space S is finite and the probability of any public signal s € S, o,,(s|7), is continuous
under weak convergence of the distribution = € A(S) over private signals. This weak assumption
is satisfied if the public signal contains some amount of noise.

Our extended game thus contains an additional stage between voter learning and platform
choice where the public opinion signal realizes. As a result, parties can condition their platforms
(24, p) on the realization of the public signal s € S and voters can condition their voting behavior

both on the chosen platforms (z,, ;) and on the realization of the public signal s.2

Public opinion
signal realizes

0 1 2 3 4
Nature chooses Voters learn Parties choose  Valence shocks Election
types platforms realize takes place

The main result of this section shows that while we introduce a channel through which party
platforms can respond to the aggregate state w, they respond to only one dimension of w, namely

the projection of w on the ideological difference between parties.

28While up till now, we have modelled signal structures as distributions over posteriors, to prove equilibrium
existence in the context of this section, it is more useful to model signal structures as Blackwell experiments.
29Gee the Appendix for a formal definition of strategies.
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Theorem 4. There is an equilibrium in which party platforms are affected by the aggregate state w

*

5o (xp —x2)T Aw. That is, the distribution over equilibrium

only through its A-projection on xj —x

policy is the same under aggregate states w and W' if (z; — x2) T Aw = (z} — 2%) T A’

The intuition is as follows. Parties only respond to components of the aggregate state w that
voters learn about. Consequently, if voters learn only about the A-projection of w on the ideological
difference x; —x}; between parties, then party platforms are only affected by this component. While
Theorem 1 suggests that voters optimally learn only about one component of w, the public opinion
signal introduces two complications for showing this. First, at the time of learning, voters do not
know yet what party platforms will be, giving them potentially an incentive to learn about multiple
dimensions of their ideal points. However, independent of the public opinion signal, the platform
difference x, — x, is parallel to the ideological difference xj —x}, of parties, by Lemma 1. Therefore,
voters have no incentive to learn about components of their ideal points orthogonal to xj — x, for
the purpose of voting. Second, the information about w obtained through the public opinion signal
could be complementary to private learning about orthogonal components of w. However, we show
that there exists an equilibrium in which no voter learns about such orthogonal components of
w, which rules out such complementarities. It is an open question whether there are equilibria in
which party platforms respond to more than one component of w.

Theorem 4 presents a severe inefficiency of preference aggregation due to endogenous voter
learning. Because of independent idiosyncratic components 9;, the average ideal point equals the
common component w. Because of quadratic preferences this makes w the policy that maximizes
unweighted aggregate voter welfare. However, voters learn only about the dimension of the common
state w along which parties disagree and, as a consequence, equilibrium policies respond only to
this one dimension of w, even if the policy space, and thus w, is high-dimensional.

The result is particularly relevant because the failure of preference aggregation and resulting
welfare loss might not show in the data and therefore go unnoticed. Judging on the basis of
revealed ideology, it seems that parties do respond to voter preferences. However, the two-party
system prevents voter learning about their preferences in more than one dimension, so there is a

large scope for unrevealed voter ideology that policy does not respond to.

5 Alternative Timing: Parties as Agenda-Setters

5.1 Model

Game: This section considers an alternative timing where parties choose platforms x4, x, € R™
before voters learn about their ideal points. Thus, parties act as agenda-setters, that is, through
their chosen positions, parties affect what issues voters pay attention to. For example, if a party
polarizes on migration, then voters will pay more attention to this issue because it becomes more
relevant to their voting decision.

Voters: Voter preferences are as in the baseline model, except for the absence of a valence

shock and we assume equal priorities, A = I,,. That is, the utility U; of voter i € [0, 1] has two
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components: Voter utility depends (i) on the implemented policy  and the voter’s ideal point
0; € R via the policy utility u(z,6;) and (ii) on the information cost ¢(7;) of signal structure
7i € A(A(R™)) scaled by &,

Ui(z,7;) = u(z,0;) — k- c(73). (9)

where

w(z,0) = —(z —0)" (x —0).

Voters ideal points are independent and the prior is spherical with mean normalized to the
origin. We also assume that the prior is log-concave, which we use to show that voter learning
benefits the moderate party (Proposition 3. The information cost is the expected reduction of

variance, from the prior y to the posterior m,
c(1) =E;[Var,(0) — Var,(6)]

where Varg(X) := E.[||0 —E.[6]||?] is the multidimensional analogue of variance. This information
cost is used in recent contributions (e.g., Ravid, Roesler, and Szentes, 2022; Thereze, 2022) and
belongs to the class of posterior-mean separable information-costs axiomatized in Mensch and Malik
(2024). The information cost is tractable because it is equivalent to the variance of the posterior

means by the law of iterated variance,
E,[Var, () — Varg(0)] = Var-(E.[6]).

Together with the quadratic policy utility, this information cost allows us to express the voter’s
objective, up to constants, as a simple function of the distribution over posterior means p € A(R"),
induced by 7 € A(A(R™)):

ngp[max{<xb — Tq,0 — xa;$b>, —<a:b — T, 0 — xa;—xb>} — /€<9,(9>:| (10)

By Strassen’s theorem, a distribution p € A(R™) over posterior means is induced by some signal
structure if and only if p is a mean-preserving contraction of the prior p, p <mps ©.2% So, voters
choose p € A(R™) to maximize (10) subject to p <ypg p. Due to the simple form of this objective,
consisting of a piecewise linear and a quadratic function, we can obtain a closed-form solution
for the voter’s learning problem in some parameter region. While the qualitative results on voter
learning hold for a more general class of information costs, this cost function proves particularly

tractable to solve for endogenous party positions.

30A distribution p € A(R™) is a mean-preserving contraction of another distribution x4 € A(R™) if there exists
R"-valued random variables X,Y such that X ~ p, Y ~ p, and E[Y|X] = X.
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Parties We assume that parties are policy-motivated (Wittman, 1973; Calvert, 1985). That is,
the payoffs U, and U, of parties a and b, respectively, are

Ua(Ta, xp) = Po(Ta, Tp)u(xa, z,) + (1 — Py(za, zp))u(xp, T),)

Ub($a,l'b) = Pa(xaaxb)u(xmx;;) + (1 - Pa(xaaxb))u(xbyxz)a

where P,(z,,xp) is the probability that party a’s policy z, gets implemented. We make the com-
mon assumption that this implementation probability is the vote share (Wittman, 1983; Wittman,
1990; Callander and Carbajal, 2022; Yuksel, 2022). A continuous mapping from the vote share
to the implementation probability can result from additional noise voters or random turnout of
partisans (e.g., Feddersen and Pesendorfer, 1996), or from non-majoritarian institutions in parlia-
ment.?! Computations suggest that our results generalize to S-shaped mappings from vote share
to implementation probability instead of linear mappings, however, an S-shaped mapping may lead
to equilibrium multiplicity.

Equilibrium We focus on subgame perfect pure-strategy equilibria, in which both parties

receive positive expected vote shares.??

5.2 Voter Learning

Since the posterior variance cost is reflection invariant, Blackwell monotonic, and posterior sep-
arable, our results on issue alignment and polarization from section 3 apply. Moreover, we can
obtain additional results. Under the posterior variance information cost, when the prior is dis-
persed enough (see Appendix B for details), the two revealed ideal points 6,, 0, € R™ acquired by

voters have closed-form solutions, namely

_(Ag, Tty Az
bal@a20) = TR Ay BT 2 o

(Ag, Zaton) Ax

wy) = 2 Ny S8

b (a, 21) (Azx, Az) v 2K

where Ax = xp — x, is the party difference. Both revealed ideal points are on the line through

the origin with direction equal to the party difference. The first term of (11) is the orthogonal

projection of the party midpoint %TJ“T” on said line. Both voter positions 6, and 6, are equally

far from this projection. These closed-form solutions prove useful to characterize party positions,
because the imply a simple expression for the vote share,
O 7 e

P — =
o (Ta, Tp) 5 + 2 = a2

3! As Yuksel (2022) notes, if half the population consists of noise voters and their vote share for party a is uniformly
distributed, then the implementation probability is exactly the vote share from non-noise voters.

32There exists a disconnected class of equilibria, where voters acquire no information and all vote for one party.
These equilibria can be easily ruled out, for example by introducing an arbitrarily small office benefit.
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What complicates the analysis is that these closed-form solutions do not hold when there is no
distribution p over posterior means 6, and 6 that is a mean-preserving contraction of the prior
. Nevertheless, key properties of the solution can be obtained, such as the following proposition,
which turns out to be crucial for understanding party positioning.

Costly voter learning generates a “bias” toward the moderate party: the moderate party receives
more votes than the true share of voters whose ideal points are closer to its position. This bias

emerges even though voters’ belief updating is unbiased in the Bayesian sense.

Proposition 3 (Bias toward Moderate Party). Under ||xzq|| < ||xp||, party a obtains a higher
expected vote share P, than the true share of voters that are closer to x, than to xp. The expected
vote share of party a decreases as the information cost parameter k decreases or as party polarization

Ty — Tl tncreases, holding =25~ constant.
[ | i , holding Tat2e tant

The high-level intuition for the bias toward the moderate party is that asymmetric signals
are less informative and hence cheaper to acquire. In other words, voters acquire biased signals
to economize on their information cost. The bias toward the moderate party is smaller when
information is cheaper or when parties are more polarized, because the motive to economize on the
information cost is less important in these cases.

To unpack this intuition, it is helpful to consider how the optimal signal structure changes as
the information cost parameter k increases. When information is cheap, k = 0, voters choose a
threshold signal structure with a threshold approximating (x, + x3)/2, which perfectly separates
voters according to whether they prefer x, or ;. Hence, the expected vote shares match the true
shares of voters whose ideal point lie closer to each party. As k increases, the optimal threshold
becomes more extreme than (z, + x3)/2 (see Proposition 4), leading to a bias toward the moderate
party. This happens because a more extreme threshold makes the binary signal more asymmetric,
which—under a log-concave prior—reduces the informativeness and thus the cost of the signal.
As information costs rise further, voters shift from adjusting the threshold to garbling the signal,
using noise to reduce the information cost. Voters garble the signal structure in an asymmetric
way, which further increases the expected vote share of the moderate party. Namely, the signal is
more often distorted toward the moderate party. This is due a new consideration: if voters must
distort the signal, distorting it toward the moderate party entails a smaller expected-utility loss
than distorting it toward the extreme party. The reason is that a mistaken vote for the moderate
party is typically closer to the voter’s ideal point than a mistaken vote for the extreme party.

Our notion of bias (toward the moderate party) is consistent with the definition of media bias
given by Gentzkow, Shapiro, and Stone (2015). This connects our model to the literature on
demand-driven media bias. Recall that one of the interpretations of voter learning is that informa-
tion is provided by an intermediary such as news media. Whereas most demand-driven explanations
of media bias involve psychological utility of news, we complement Che and Mierendorff (2019) by
showing that media bias can be rational for voters to economize on their information cost. In their
dynamic model, voters choose between left- and right-biased news subject to a time-based cost.

For extreme beliefs, voters acquire news biased toward their current belief. By contrast, our model
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allows for flexible information acquisition, so voters may acquire unbiased news if they want to.
However, the acquired information is always biased toward the party closer to their initial belief.

Corollary 4 has important implications for electoral competition. The corollary shows that
endogenous information creates two new forces affecting party positions: a moderation force and
a differentiation force. First, the bias toward the moderate party creates an additional motive for
parties to moderate. This motive is stronger, the more costly is information. Second, the extreme
party has an incentive to differentiate, because party differentiation decreases the bias toward the
moderate party. The flip-side of this is that the moderate party has an incentive to move closer to
the extreme party, because this increases the bias toward itself.

We show in the following that the moderation motive is the central force at play in symmetric

equilibria and the differentiation motive is the central for understanding asymmetric equilibria.

5.3 Equilibrium
5.3.1 Symmetric Setup

We first characterize the equilibrium under a symmetric setup, that is, when parties are equally
ideologically extreme from the viewpoint of voters, ||z} || = ||z;||. For the statement of the theorem,

define k via
1—&

lzall = Efle]]-

The parameter k is the smallest information cost parameter for which the closed-form solution (11)

for the voter learning problem still holds.

Theorem 5. Let ||z} || = ||z}|| and x}, # x}. The following constitutes an equilibrium.

Party platforms Revealed voter ideology

1 1
k € (k,1): Polarizing equilibrium (x4, 2p) = (1 — k)(x},2) p= 25(?) + 25(?)

k>1: Downsian equilibrium  (z4,x) = (0,0) p=10(0)
The equilibrium is unique if ||y — x| < &E[||0]]] and x # 1/2.

The theorem describes two types of equilibria, depending on the size of the information cost.

For large information costs, there is a Downsian equilibrium, reminiscent of the median-voter
theorem (Downs, 1957). In this equilibrium, parties fully converge at the voter’s prior expectation
of the optimal policy. Voters acquire no information and split their votes arbitrarily between the
two parties.

For smaller information costs, there is what we call a polarizing equilibrium. In this equilibrium,
parties diverge and voters acquire information, which polarizes the population into two groups.
Surprisingly, the model allows for a simple closed-form solution of the party and voter positions.

The smaller the information cost, the more parties and voters polarize.
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The model features the same comparative statics—cheaper information increases polarization—
as the model in section 4, where parties choose positions after voters learn. The comparative statics
under the present timing are driven by the novel moderation motive. For a high-level intuition,
recall Corollary 4: to economize on the cost of information, voter learning is biased toward the
moderate party. This bias encourages parties to moderate. As information becomes cheaper, the
motive to reduce the information cost weakens, decreasing the bias and leading to more party
polarization.

To explain the intuition in more detail, let us first recall parties’ trade-off when choosing posi-
tions. Policy-motivated parties trade off votes (winning often) and ideology (winning big). Parties
gain votes by moving closer to voters’ prior expectation. Parties gain ideological utility by moving
closer to their own ideal policies, creating polarization. The optimal party positions equate the
loss of votes with the gain in ideological utility from polarizing further. As a consequence, the
smaller the loss of votes, the larger is the equilibrium level of polarization. Now, the bias toward
the moderate party creates an additional loss of votes from polarizing further than the other party,
dampening polarization. However, this bias toward the moderate party recedes as information

becomes cheaper, creating more party polarization.

5.3.2 Asymmetric Setup

We now turn to the equilibrium when one party is more ideologically extreme, which we assume
without loss is party b, so ||z}|| < ||z}l

To state the theorem, we define proj, as the scalar projection on v € R,

proj, : R" = R
(v, x) (12)
x J
o]
and P, . as the orthogonal projection on the line through y, z € R",
Py.:R" = R"
_ _ (13)
xHy+@ y.x) z2—y

lz=yll llz—yll

We prove the following theorem for the case that parties are ideologically “on different sides” of
the center of the voter distribution. Formally, the theorem assumes that the scalar projections of
party ideal policies z; and z; on the party ideological difference x; — z}, are on different sides of 0,

that is, projys (xF) <0< projxg_xz(:cZ).

Theorem 6. Suppose proj,: - (7) <0 < Pproj,: - (3) and [|x5]| < ||zl The positions

11—k " "
l’a(ﬁ) = P(I—H)zz,(l—n)ml’; (1_2}{((1 - "{)ma + Hwb))

1 (14
— K * *
$b(K) = P(lfn):r:;,(lfn)acl’; (1 9% ((1 - ﬁ)xb + K‘ra))
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Figure 4: Party positions as a function of the information cost parameter x

constitute an equilibrium for
prymry=1 1> and  max{||za(k)|, [[zs(r)[[} < E[[0]]. (15)

This is the unique equilibrium for k satisfying (15) if additionally ||z} — x| < KE[||0]]].
If k > 1, the unique equilibrium is (zq,zp) = (0,0).

Theorem 6 states that in equilibrium, party positions z, and x; are on the line through (1—x)x},
and (1 — w)xj, for all & satisfying (15). The positions of parties on said line are given by (14). As

in the equilibrium under a symmetric setup, party polarization is given by the simple formula
zp(k) — wa(k) = (1 — K)(zf — x7).

In particular, party polarization increases as the information cost x decreases.

Figure 4 plots the equilibrium positions (x4, zp) as a function of x under a one-dimensional
policy space. For large information costs, k > 1, parties converge fully as in the symmetric setup.
For smaller information costs, x < 1, parties polarize as k decreases. For an intermediate range
of k, there is no equilibrium in pure strategies where both parties obtain positive expected vote
shares. We comment on this below. For small s, Figure 4 plots numerically solved equilibrium
positions.

A notable feature of the equilibrium is that for intermediate information costs, both parties are
on the same side of zero and one party is more extreme than its ideal policy. This contrasts with
the Calvert-Wittman model under exogenous voter positions, where party positions necessarily lie
between their ideal policies (Roemer, 1997).

This feature of the equilibrium is driven by the differentiation motive, which creates chase-
and-evade incentives, similar to the literature on valence advantage (Groseclose, 2001; Aragones and
Palfrey, 2002; Bernhardt, Buisseret, and Hidir, 2020). By the logic of the differentiation motive,
in an asymmetric equilibrium, the extreme party has an incentive to differentiate (“evade”) and
the moderate party has an incentive to move closer to (“chase”) the extreme party. When the

information cost parameter x is close to 1/2, the differentiation motive become strong enough to
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push the extreme party beyond its own ideal policy. In other words, endogenous voter learning
gives parties an incentive to strategically extremize. The moderate party, on the other hand, moves
so close to the extreme party that it is pulled beyond the center of the voter distribution, zero.
If k is very close to 1/2, these chase-and-evade incentives become so strong that a pure-strategy
equilibrium fails to exist, as is common in the literature on valence advantage (Aragones and
Palfrey, 2002; Hummel, 2010).

6 Horizontally Differentiated Goods: Rising Markups

In this section, we adapt our model to a market context. We examine firms that produce hor-
izontally differentiated products in some attribute space. A key difference between markets and
politics is that consumption is private in markets, whereas policy is public: consumers can pur-
chase the product that best fits their preferences, but while voters can support their preferred
policy platform, ultimately only one policy is implemented for everyone. This distinction implies a
potential benefit for product differentiation in markets—allowing consumers to select their optimal
match—that is not present in politics. However, we show that even with this advantage, a lower
cost of information still harms consumers. The reason is twofold: firms differentiate their products
excessively from a social welfare standpoint, and unlike political parties, they also set prices. As
consumers become more polarized due to lower information costs, firms can exploit their increased
market power by raising prices, which further decreases consumer welfare. Methodologically, we
show that endogenous consumer learning allows us to solve a multidimensional Hotelling model by
reducing it to one dimension.

Our adaptation of the model can also be interpreted within a political-economy framework that
includes valence competition. In this context, political parties not only choose policy platforms but
also compete based on valence attributes such as competence of their candidates (see Ashworth and
Bueno de Mesquita, 2009). Similar to how firms set prices in our industrial organization adaptation,
parties may invest in valence to attract voters.

Adapting our model to a market context is largely a matter of reinterpretation. We reinterpret
voters as consumers with unit demand, the policy space R™ as a product attribute space, and parties
as firms. However, we need to make two important modifications to the model. First, we replace
the exogenous valence shocks with prices, which are chosen by firms. Second, firms maximize profits
rather than a combination of vote share and ideological utility, which our parties maximized. Apart
from these two adjustments—the substitution of valence shocks with endogenous pricing and the
change in the firms’ objectives—the models remain essentially the same, except for the previously
mentioned welfare difference between private consumption and public policy. We also maintain the
timing structure, adhering to the standard sequence in Hotelling models, where firms first choose

product locations in attribute space and then set prices.
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0 1 2 3 4

I ! ! ! V]
I T T T 7

Nature chooses Consumers  Firms choose Firms set Consumers
types learn product locations prices buy products

Consumers The utility U; of consumer i € [0, 1] from consuming one unit of product z at price

p given their preference 6 and information cost ¢(7) is
Ui(xa ‘9;]77 T) = U(l‘,@) - D K’C(T)'

We interpret u(z, ) as the utility of consuming the good with attribute x. Consumers purchase
whichever product gives them the higher expected utility.?® We call the expected ideal point of a

consumer their revealed preference.

Firms There are two firms, labelled a and b, in the market. Firms simultaneously choose their
respective product locations, z, € R™ and x; € R”, and afterwards simultaneously choose their
respective prices, p, and py. Both firms have identical constant marginal costs, which we normalize
to zero, so prices should be interpreted as markups. Firms maximize profits, that is market share

times price. Given the distribution p of revealed preferences, the utility U, of firm a is

Ua(Ta, Tb, Pas Pbs P) = Pa - Eo~p []l (u(xa, 0) — u(xp, 0) > pa — pb)]a

and analogously for firm b.

We assume that consumers preferences are drawn from a normal distribution A(0,3) and
consumers are restricted to normal signal structures. This is done, so the resulting distribution of
revealed preferences is necessarily log-concave (it is normal), by which there exists a pure-strategy
equilibrium of the price subgame for all product locations (Caplin and Nalebuff, 1991). We study
the case of no aggregate uncertainty, assuming consumer ideal points are independently distributed,
and maintain the focus on pure-strategy equilibria.

The following key lemma shows two important differences between the political and the market
context. First, product locations are on the line of revealed preferences, whereas policy platforms are
not necessarily on the line of revealed ideal points. Second, the direction of product differentiation
is an eigenvector of ¥ A, whereas the direction of platform differentiation is determined by the
ideological difference between parties. Furthermore, the lemma allows us to reduce the model to
one dimension and apply results from one-dimensional Hotelling models (Anderson, Goeree, and

Ramer, 1997) for our subsequent equilibrium characterization.

Lemma 2. Consumers’ revealed preferences and product locations are supported on the same line,

the direction of which is an eigenvector of X.A.

The intuition is as follows. Analogous to the political-economy context, consumers’ best re-

sponse to product locations is to learn such that revealed preferences are on a line with the direction

33In other words, we assume that the utility from not purchasing any product is sufficiently low that all consumers
prefer to buy one of the available products in equilibrium.
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Y A(xp—x4). On the other hand, we show firms’ best response is to locate their products on the line
of consumer preferences: any other location is dominated by its projection on the line. Combining
both, product differentiation x, — x, must be parallel to ¥ A(z, — x,). That is, firms differentiate
their products in a direction that is an eigenvector of ¥ A.

Thus, there is a potential multiplicity of equilibria in this model. In fact, the following theo-
rem shows that there is an equilibrium for any eigenvector of XA, provided the information cost
parameter is small enough. To state the theorem, let (v1,...,v,) denote a basis of A-normalized
eigenvectors of X A, that is, there exists A\; € R: Y Av; = \;v; and UZTAUZ' =1forallie{l,..n}3

Let p denote the distribution of revealed consumer preferences in equilibrium.
Theorem 7. The set of equilibria is fully characterized as follows:

o There is an equilibrium without learning, product differentiation, or markups:

e Forallie{l,..,n},if
k< %’UZTAEAW,

there is an equilibrium with positive learning, product differentiation, and markups, given by

2 3
p=N (O, aiij) , 0/2) = v AX Av; — 3 == Z\/ 2To,0;i,  Pa =Ppp = 37ra§.

The intuition for the equilibrium without differentiation is as follows. In standard Hotelling
models, firms differentiate their products to soften price competition (see, for example, d’Aspremont,
Gabszewicz, and Thisse, 1979). However, this mechanism relies on consumer heterogeneity. If con-
sumers do not acquire information and their revealed preferences are all located at zero, firms do
not differentiate their products and charge no markups. Anticipating identical product locations,
consumers choose not to learn, confirming this as an equilibrium.

In the equilibrium with consumer learning, consumers acquire information that disperses their
revealed preferences (o, > 0). Firms respond by differentiating their products, which allows them
to charge positive markups and earn profits. As the information cost x decreases, consumers learn
more, increasing o,. This greater consumer differentiation leads to higher product differentiation,
further softening price competition and resulting in higher prices. Notably, prices increase quadrat-
ically in the dispersion of consumer preferences o, because both more differentiated products and
more dispersed consumer preferences reduce competitive pressures.

A priori, it is unclear whether lower information costs benefit or harm consumers. While prices
increase as k decreases, product differentiation may benefit consumers by allowing a better match
to products, and there is a direct positive effect from the reduced information cost. To address
this question, we focus on the firm-optimal equilibrium, where products differentiate along the

eigenvector v; that maximizes viT AY Av;. However, the comparative statics would be the same

31Such a basis is given by the basis in which A and £~! are simultaneously diagonalized as quadratic forms.

38



Consumer Welfare

Information Cost Parameter «

Figure 5: Consumer welfare increases as information becomes more costly.

if we considered the equilibrium associated with another eigenvector. We assess the aggregate

utilitarian welfare of consumers, or, equivalently, their ex-ante utility. Define

8= 3e~+D™ ~0.04,

3
R = —u] AL Av;.
2

Corollary 2 (Welfare Comparison). As the information cost parameter k increases, consumer
welfare

e decreases strictly for k € [0, R),
e increases strictly for k € (BR,R),
e remains constant for k > R.

Consumer welfare is mazimized in the last case, in which there is no product differentiation.

Firm profits are decreasing in k.

Figure 5 illustrates how consumer welfare varies with x. Welfare decreases briefly when & is
small (from 0 to approximately 0.04 %) and then increases until x reaches &.

Our result shows that, except for a negligibly small region, cheaper information harms con-
sumers. Although product differentiation can theoretically benefit consumers, firms differentiate
excessively from a social standpoint (Anderson, Goeree, and Ramer, 1997), and increasingly so for
lower information costs. Moreover, prices increase quadratically with o, because both more differ-
entiated products and more dispersed consumer preferences reduce the intensity of competition.
These negative effects outweigh the direct benefits consumers receive from lowering information
costs. As a result, overall consumer welfare decreases when information becomes cheaper.

Our findings contribute to the literature on the welfare effects of information in markets. It
is known that information can harm consumers by leading to higher prices (Moscarini and Otta-
viani, 2001; Choi, Dai, and Kim, 2018; Armstrong and Zhou, 2022; Albrecht and Whitmeyer, 2023;
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Biglaiser, Gu, and Li, 2024). Our analysis additionally incorporates endogenous product charac-
teristics, which exacerbates the effect of consumer information on prices. New to this paper is, to
the best of our knowledge, the comparative static result taking into account welfare effects of the

cost of information, when both product characteristics and prices are endogenous.

7 Conclusion

In this paper, we dispense with the assumption that voters perfectly know their political prefer-
ences. Instead, voters can flexibly learn about their ideal points at a cost and do so for the purpose
of expressing their political opinion in elections. Voters’ choice set shapes—through learning about
ideal points—the revealed ideology in the population. Because voters’ choice set is constrained to
the two party platforms in policy space, voters are not motivated to learn in a multidimensional
or continuous way about their ideal points. As a result, revealed ideology displays issue alignment,
and polarizes in the sense of approaching a binary distribution as valence becomes less uncertain.
Voter learning predicts that polarization of voters and parties are mutually reinforcing and increase
as information becomes cheaper. Finally, because voters only learn about the axis of party dis-
agreement, policy is not responsive to dimensions of voter preferences that are orthogonal to this
axis.

This paper opens several avenues for future research. One important question is what happens
when voters learn jointly about their ideal points and party platforms. Such joint learning could
explain the correlation between voters’ perceptions of candidate positions and their own ideologies
(Hare, Armstrong, Bakker, Carroll, and Poole, 2015). Furthermore, while we considered voter
learning occurring either before or after platform choice, in reality, both processes may coexist,
especially since elections are held repeatedly: Some voters have acquired information during past
elections, while other voters form opinions after observing current party campaigns. Additionally,

examining repeated elections could shed more light on the dynamics of polarization.
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A Appendix: Main Proofs

Throughout we use the notation (x,y)4 := ' Ay and (z,y) := 2"y for z,y € R", A € R™",

A.1 Theorem 1

Proof. The proof consists of two parts. In the first part, we show that only the A-projection®
of the posterior mean on the platform difference x, — x, is payoff relevant. In the second part of
the proof, we show via a reflection argument that a voter acquires a distribution over posteriors
such that the distribution over posteriors means has support on the line through the origin and
YA(zp — z4q).

Part I The instrumental utility of 7, that is the objective of (P) neglecting the information cost,

can be rewritten as follows:

E. Ey:max{Ew[— <9—xa,9—xa>A],Eﬂ[— <9—$b,9—$b>A} +V}H

=E.|E, :max <xa — xp, Ex[0] — %T—i_xb> ,<xb — 24, Er[0] — %TW>A + I/}:|:| + C1 + Oy

(16)

Ct = Ex[(wa + 21, Exl6])a] — B[00, 0)4] = Eyl(wa + 70,004 — (6,6).
Cr = —5 (e 7a)a + (o0, 12).0)

are constants. In the third line, we used that the expectation is a linear operator and that the
inner product is linear. In the fourth line, we used the law of iterated expectations to show only
the first moment of the posterior is payoff-relevant.

Because E, [max{x,y + v}] is a function of z, y, and the distribution of v only, (16) shows that
the instrumental value of information depends only on the distribution of the A-projection of the

posterior mean E.[f] on the platform difference xj, — x,.

(v,0)p, _ v BO

ooy eV = yToyV a8 the

3For any symmetric, positive definite matrix B € R™*™ and vector v € R", we refer to
B-projection of 6 on v.
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Part II Suppose, for the sake of contradiction, that the voter acquires a distribution 7 over
posteriors that induces a distribution p of posterior means, which does not have has support on the
line through the prior mean (origin) and Y A(zp, — z,). We construct—through reflection, mixing,
and garbling—a strictly cheaper but instrumentally as valuable distribution 7 over posteriors that
induces a distribution p over posterior means supported on the line through the origin and X A(xp —
Zq). The three steps of our construction of 7 are visualized in Figure 2.

Step 1 - Reflection: We define a Bayes-consistent distribution Ref(7) of the “reflected”
posteriors that has the same information cost as well as instrumental value as 7.

To prove the result for general A and ¥, we make use of the ¥~ !-reflection Ref across the line
through the origin and Az := Y A(xp — ), defined as

Az, Q)1 .
Ref(0) = QMASL' — 0.
This is a well-defined reflection because the symmetric, positive definite matrix 3 has a symmetric,
positive definite inverse ¥~'. In the simple case when ¥ and A are equal to the identity matrix,
Ref is simply the standard reflection across the line through the origin and xp — x,. In the general
case, this reflection is useful for two reasons.
First, the ¥~ !-projection on Az preserves the instrumental value. That is because the projection

is equivalent to the A-projection on the platform difference xp — x, by
(xp — T, )4 = (1 — 24)  (ZTID)A(zp — 20) = (BA(zp — 24)) ' 2710 = (AL, 0) 1. (17)

That the reflection Ref preserves the X~ !-projection on A# thus implies preserving the payoff-
relevant A-projection on the platform difference x;, — z,.

Second, Ref preserves the prior u. Note that Ref is a linear function, which we can describe as
multiplication by a matrix @, Ref() = Q6. By Ref being a reflection, we have Q = Q1. Ref is a
reflection with respect to inner product £~!, so Ref preserves the distance induced by ¥~'. Hence,
we have QT2 1Q = X!, inverting which delivers QXQ" = X. The characteristic function of Q#,
as a random vector, satisfies for all t € R™, ®gp(t) = Pg(QTt) = v (tTQIQTt) = ¥ (tTXt) = Pp(2).
Thus, Ref(f) = Q0 and 6 have the same distribution.

The reflection Ref of the state space induces an according reflection on posteriors and on
distributions over posteriors through the pushforward and iterated pushforward, which we both
denote by Ref as well.30 Intuitively, we are simply relabeling the states.

The distribution Ref(7) is Bayes-consistent, since for all Borel sets A € R™,

[ d(met () = [ Ret(m)(A)dr = Ret(u)(4) = (),

where the last equality holds by the prior p being invariant under Ref.

36The pushforward Ref.: A(R™) — A(R™) is formally defined via Ref.(m)(A) = m(Ref™*(A)) for Borel sets
A C R". The iterated pushforward on A(A(R"™)) is simply (Ref.).. For ease of reading, we write Ref for both Ref.
and (Ref.)..
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As argued above, Ref preserves the A-projection on zj — x4, and by linearity of Ref it maintains
the distribution of the A-projection of the posterior mean on the platform difference. Thus, the
instrumental value of 7 is preserved under Ref. The information cost is also preserved under Ref

since

| Dallwiet(r) = [ DRet(r)|nydn = [ DiRet(r) [ Ret(u))dr = [ Dirlyar,

where the last equality holds because the Kullback-Leibler divergence is invariant under coordinate
transformations. Thus, the voter is indifferent between 7 and Ref(7). Finally, the distribution
over posteriors means induced by Ref(7) is simply Ref(p), the reflection of the distribution over
posterior means induced by 7.

Step 2- Mixing: It follows immediately that the mixture %T-i—% Ref(7) is also Bayes-consistent
and has the same instrumental value. It also has the same information cost by posterior separability
of the information cost, which implies that the cost is linear under mixing. By posterior separability,
the information cost can be written as an expectation with respect to the distribution 7 over
posteriors, which is linear in the distribution .

Step 3 - Garbling: Finally, we take a certain mean-preserving contraction of %7‘ + %Ref (1)
to reach 7 (which corresponds to a garbling of the corresponding signal structure), which is also
Bayes-consistent and has the same instrumental value, but has a lower information cost. We use
the mean preserving contraction that contracts all posteriors whose means have the same X 7!-
projection on the line through Y A(x, — x,). Any mean-preserving contraction is Bayes-consistent.
The contraction 7 preserves the instrumental value of information since it preserves the distribution
of the A-projection of the posterior mean on x,—z,. Crucially, the distribution over posterior means
p induced by 7 has support on the the through the origin and Y A(xzp — x,). The reason is that
%7’ + %Ref(T) is constructed to be symmetric around this line with respect to the X~ !-projection.
Finally, a mean-preserving contraction lowers the information cost by convexity of the Kullback-
Leibler divergence Dy (w||p) in its first argument. In fact, the Kullback-Leibler divergence is
strictly convex for 7 that are absolutely continuous with respect to p by strict convexity of xlog x
and D, (7||p) = [log (%) %du. Without loss, the posteriors 7 induced by 7 are almost surely
absolutely continuous with respect to prior u, otherwise 7 has infinite cost and is clearly suboptimal.
Thus, 7 has a strictly lower information cost than the original distribution 7 if 7 did not have

posterior means already on the line, in which case the mean-preserving contraction is strict. O

In Appendix D.3, we discuss more general information costs, such as certain distance-based

costs, for which this proof works.

A.2 Theorem 2

Proof. We show, for completeness, that any optimal signal structure has no more signals than
actions under degenerate valence shock, v ~ §y. The proof uses only convexity properties of the

Kullback-Leibler divergence Dxr..
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The voter acquires a distribution 7 over posteriors 7, such that the posterior is almost surely
absolutely continuous with respect to the prior p. Otherwise, the voter obtains a negative infinite
payoff and could do better by acquiring no information. Suppose, for the sake of contradiction,
that the voter acquires a signal structure such that the induced distribution 7 over posteriors has
a support with more than two posteriors. Then, we can strictly improve the voter’s utility by
garbling the signal structure based on the action recommendation (after resolving indifferences
between parties a and b for a, say). More precisely, we partition the space of posteriors A(R™)
into the subset A, on which voting for a is weakly preferred and another subset A, on with
voting for b is strictly preferred. The garbling corresponds to a mean-preserving contraction of 7,
namely contracting all posteriors in A, and in Ay, respectively, inducing a binary distribution over
posteriors. The voter’s utility from a distribution 7 over posteriors 7 is the expected value of the

value function, which consists of the instrumental value and the Kullback-Leibler divergence,

/ (max {Ex[u(zq, 0)], Ex[u(zp, 0)]} — Dk (7||p)) dr.

On each A, and Ay, the instrumental value (the max term) is linear in the posterior. The divergence
Dy, is strictly convex in posterior w for m absolutely continuous with respect to u, as argued in
step 3 of the proof of Theorem 1. Thus, the value function is strictly concave on the support of
7 in A, and in Ay, each. By Jensen’s inequality, our mean-preserving contraction on A, and A,
weakly improves the voter’s utility. Because the mean-preserving contraction is strict on at least
one of A, and Ay, the voter’s utility improves strictly.

The second part of Theorem 2 follows immediately from Proposition 7 and Lemma 24 in the
Appendix D. O

A.3 Lemmal

Proof. First, we show the best response z, of party a to xp and p necessarily satisfies the first-order
condition of party a’s objective. The argument is analogous for party b. If party a chooses z, = x,,
it obtains utility greater or equal to zero because x, delivers zero ideological utility, u(xq,x}) = 0,
and a non-negative vote share. If x, is outside the ellipse described by u(z,,z}) > —m, then the
resulting utility is negative, because the utility from the vote share can be at most m. Thus, all z,
outside this compact ellipse are suboptimal and by differentiability of the vote share in z,, shown
below, the maximum is obtained on this ellipse and necessarily satisfies the first-order condition,
which we analyze next.

Taking the gradient V with respect to z, of the objective of party a, we obtain the necessary
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first-order condition of the optimal platform z, given p and xzy:

\Y (m/F,, (u(wq,8) — u(xs, 0))dp(0) + u(xa,x2)> =0

om / fo (w0, 0) — (s, 0)) Vu(za, 0)dp(6) + Vulza,2) = 0
=w(0)

& /mw(@)QA(a:a —6)dp(0) + 2A(xq — ;) =0

=24 (m [ wlO)es ~ 0)dp(0) + (a0 - ) ) =0

m [ w(8)0dp(8) + x7;
m [w(0)dp(6) + 1

The integral of the expected vote share is well-defined. We can exchange integration and differenti-
ation because the partial derivative of the integrand exists and is bounded in absolute value by an
integrable function in 6. The latter holds because v has finite first absolute moment and Vu(z,, 0)
is linear in 6. The last equivalence uses that A is symmetric and positive definite, so its kernel is
{0}

The result for platform z; is analogous. Together, this implies
xy — T,

- m [gn w(0)dp(6) + 1

Ty — Tq
SO Ty — T4 is parallel to x7 — 2. O]

A.4 Theorem 3

Proof. By Lemma 25 in Appendix D, under the restriction to normal signal structures, it still holds
that voters’ revealed ideal points are on the line through the origin and ¥ A(xp —x,). The first-order
conditions that characterize the equilibrium platforms (Lemma 1) are unaffected by the component
of voter ideal points orthogonal (with respect to A) to z — x,. That is because the ideal point 6
enters the first-order conditions only via the utility difference u(xg, 0)—u(zp, 02lax,—xy, 0— ‘B"Tm> A
This utility difference is unaffected by the component of 6 orthogonal (with respect to A) to zp — 4.
Thus, while in the following proof we assume that the line of voter ideal points is parallel to x, — x,
all steps generalize to a line of voter ideal points that is slanted with respect to xp —x,. Furthermore,
in any equilibrium, z, — z, is parallel to z; — x}; by (18). To simplify exposition we change into
an orthonormal basis of A in which x} — z, and hence xj, — x4, is parallel to the first basis vector.
Such a basis exists by the Gram-Schmidt algorithm.

We show all equilibria are symmetric. By Lemma 1, equilibrium platforms can be written as a

weighted average of voter ideal points and an aggregate voter ideal point 0,

o Jw(©)0dp(0)
= Tw(®)dp(6)”
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*

i a1
B m [w(0)0dp(0) + =} B mé + Tw(®)dp(®)*i

Tj = = 1

(19)

for j = a,b. We show in any equilibrium, the aggregate voter ideal point 6 is zero, which implies a
symmetric equilibrium
1
0)dp(0
Jw(0)dp(0) (mZ,mz)

Tq,Xp) =
o R

Suppose, for the sake of contradiction, that the aggregate voter ideal point # was not zero. By
the paragraph above, the revealed voter ideal points are on a line parallel to the first basis vector.
Thus, the aggregate voter ideal point 8 is on this line. Suppose without loss that its first component
is positive, §; > 0. We show this implies that the platform midpoint Z := “Tm must be to the left
of the aggregate voter ideal point #, which in turn must be to the left of the platform midpoint,
creating a contradiction. By (19) and T, 1 = —p 1, the first component of the platform midpoint
T is positive by

MmOy + i (0 + 25 ) _ —
Ty = Jw©)dp(0) "ol - T m f: € (0,0,). (20)

I S - 1
Mt Tw0)dp) Mt Tw@)dp®)

Under normal signals, the distribution over posterior means is symmetric around 0 and quasi-
concave. Thus, a positive party midpoint, 1 > 0, implies that the weighted mass of ideal points
to the left of T is greater than to the right, so the aggregate voter ideal point must be to the left
of the party midpoint. Formally, writing vectors in row-notation, Vy > 0, w((zZ; — ¥,0,...,0)) =
w((Z1+y,0,...,0)) but the density of revealed voter ideal points is greater at (z; —y,0,...,0) than
at (Z1 + 9,0, ...,0). Thus, 6; = [w(#)0dp(d) < Ty in contradiction to (20).
Symmetric party platforms
(20 13) = ala, ) (21)

satisfy the first-order conditions of optimality if

1
-~ m [ fulaley —22,0))dp(0) + 1

We call o the degree of platform polarization. We establish equilibrium existence by showing

a (22)

that there exists a degree of platform polarization a € (0,1) that satisfies (22) where p is the
induced distribution over revealed ideal points when the party platforms satisfy (21). We do so by
constructing an equilibrium correspondence whose fixed point exists by monotonicity properties.
Conceptually, this proof of pure-strategy equilibrium existence and the subsequent comparative
statics result are similar to those in supermodular games.

We construct a correspondence G from [0, 1] to (0, 1) as a concatenation of two correspondences,
g1 and go. Let g1 map « € [0,1] to set of distributions p over posterior means induced by some

optimal learning strategy given the degree of platform polarization a. We can restrict attention
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to one-dimensional normal signals, which can be parametrized and ordered by the variance 02 of
p. Because this variance is bounded by the prior variance in that dimension, standard arguments
deliver that g; is nonempty compact-valued. Let go map some distribution p of revealed ideal
points to the set of equilibrium « that satisfy the first-order condition (22). The function g is
nonempty-valued with values in (0, 1) because both the left-hand side and right-hand side of (22)
are continuous and at o = 0 the right-hand side is larger while at & = 1, the left-hand side is larger.

By the intermediate value theorem, a solution « exists. Define the correspondence G = g5 o g1,

G: [0,1] — 201

a s {p} = {a)

Lemma 3. Platform polarization increases voter polarization, that is min g1 and max g1 are strictly

nCereasing.
This lemma, follows from Proposition 1.

Lemma 4. Voter polarization increases platform polarization, that is, min go and max gs are strictly

increasing in the variance a§ of the symmetric, normal distribution p of voter ideal points.

Proof. The smallest and largest « that solve (22) exist because gs is nonempty by the above and
because the left- and right-hand side of (22) are continuous, so the preimage of {0} under the
continuous difference between the left- and right-hand side is closed.

A higher variance a% of p implies that voters are strictly further away from 0 (the pro-
jection of the party midpoint) in first-order stochastic dominance. This implies that the term
[ fuolalay — z%,0))dp(0) strictly decreases by strict quasi-concavity of f,. Thus, the right-hand
side of (22) strictly increases pointwise, which implies a greater smallest and largest o that solves
(22). O

Together, this implies that the minimum and maximum of G : [0, 1] — [0, 1],

(min G) () := min{G(a)} = min go(min g; (cv))
(max G)(«) := max{G(a)} = max ga(max g1 (c))

are strictly increasing. Fixed points of min G and max G correspond to equilibrium degrees of
platform polarization. These exist by Tarski’s fixed point theorem, viewing [0, 1] with the usual
ordering as a complete lattice using monotonicity of min G and maxG.

Finally, we show the comparative statics result.

Lemma 5. A smaller k implies that the smallest and largest fixed point of G weakly increase.

Proof. A smallest and largest fixed point of G exist by Tarski’s fixed point theorem.
The functions min G and max G weakly increase pointwise as x decreases. This implies that the
smallest and largest intersection of G with the identity function on [0, 1] increase strictly, leading

to a higher smallest and largest equilibrium «. To prove this, note first that go is unchanged. The
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functions min g; and max g; weakly increase pointwise by Proposition 1. Together with min g and

max g being non-decreasing, this implies min G and max G are weakly higher pointwise. O

This concludes the proof of Theorem 3. O

A.5 Theorem 4

Before we prove Theorem 4, we formally describe the strategies and payoffs of players. We also
pave the way for our proof by introducing a way to represent the extensive-form strategies of our
two parties and continuum of voters as a static game between only four players.

Players and Strategies: Parties j € {a,b} choose their platforms conditional on the realized
public opinion signal s € S. Formally, a strategy of party j is a function z; : S — R".

After learning, voters choose who to vote for conditional on the public signal s and the realized
party platforms (z4(s), zp(s)). Formally, voters choose vote choice functions v : SXR"xR" — {a, b}
that map (s, z4(s),xp(s)) into a choice among parties. Because the posterior mean is a sufficient
statistic for optimal voting behavior (Remark 1), we can code subgame-perfect vote choice functions
in the following strategically equivalent reduced-form way: voters choose a posterior mean p € R"
conditional on each public signal s, incorporating that, subsequently, they choose optimally between
xq(s) and x3(s) given posterior mean p and their valence shock. We denote a generic reduced-form
strategy by ps € (R™)°. As usual in rational inattention, it is without loss to identify the signal
space with the set of actions, S = (R”)S . Thus, voter i’s extensive-form strategy is reduced to a
signal structure (stochastic kernel) o; : Q x D — A(R™)",

Because voters are ex-ante homogeneous and we assume that all voters acquire the same signal
structure, we model our continuum of voters through a representative voter, who chooses a signal
structure o : Q x D — (R™)%.

As mentioned in the main text, a single, infinitesimal voter cannot affect the realized signal
distribution. Modeling voters as a representative voter, we have to ensure that, when we define
payoffs, the representative voter’s signal structure does not affect the public signal. Therefore, we
introduce a fourth, fictional player who also chooses a signal structure oy : Q x D — A((R")%).
We will define the payoff of the representative voter such that in equilibrium, it mimics the signal
structure of the representative voter, ensuring consistency of the public opinion signal with voters’
learning strategies.

In particular, the public signal is obtained as follows from o¢. By the continuum of voters and
the compact support of pg, which implies finite second moments, we can apply a law of large num-
bers for a continuum of random variables (Uhlig, 1996) if we interpret realized population distribu-
tions as Pettis integrals. In particular, if voters acquire the signal structure o, then, conditional on
the aggregate state w, the realized distribution of signals is deterministically ) s u(w,d)o¢(-|w, ).

Thus, the probability of a certain public opinion signal s conditional on aggregate state w and
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learning strategy oy is

op(slw, o) =0y (s

Z,u(w, §og(-|w, 5)) :
é

From this definition, it follows that the probability o,(s|w, o) is continuous under pointwise weak
convergence of oy.
To sum up, we have represented our game as a static game between four players (two parties,

a representative voter, and a fictional player), who choose strategies
(€a, 1, 0,07) € (R™)® 3 (R")S x (A((R™)%))PP 5 (A(R™)®)P.
Payoffs: The payoft U, of party a is

Ua(.’I)a, Ty, 0, Uf) =

Z p(w,0)op(slw, or) (m/Fl,<u(a:a(s),p5(s)) — u(mb(s),pg(s)»da(pg\w,(5) +u(ma(s),x:)> .

w,0,8

The payoff U for party b is defined analogously.

The utility U, of the representative voter is

Uy(xq,zp,0,0f) := Z p(w, 6)op(slw, o) /v(ps(s),w + 4, a:a(s),xb(s))da(pg(s)\w,é)
w,0,8 (23)

—c(0)

where
o(p.0,2.7) = u(z, 0) ?f u(z,p) > u(y,p) + v 0
R |\ u(y,0) +v ifu(z,p) <u(y,p)+v
= F, (u(z,p) — u(y, p))u(z,0) + (1 — F,(u(z,p) — uly,p)))u(y, 9)
+ h vdF(v),
(z.p)—u(y,p)

c(o) = DKL( (0)ps|| pled) g prs).

The utility v(p, 0, x,y) captures that the voter votes optimally between platforms = and y given
reported posterior mean p. The information cost ¢(o) is mutual information, which is the Kullback-
Leibler divergence of the joint distribution P“%)Ps of state (w,d) and voter signal pg from the
product distribution P« @ PPs = ;@ PPs.

The fictional fourth player has payoff
1 ifoy=o,

Up(xq,xp,0,0¢) :=
0 else.
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Thus, in equilibrium oy = o.

Proof. First, we prove equilibrium existence through a fixed point theorem. Second, we prove
existence of an equilibrium in which the desired statement of Theorem 4 holds.

Fized Point Theorem: We apply the Kakutani-Fan-Glicksberg fixed point theorem (Aliprantis
and Border, 2006, Theorem 17.55) to show existence of a pure-strategy equilibrium. It states that
a correspondence ¢ with closed graph and nonempty convex values on a nonempty compact convex
subset K of a locally convex Hausdorff space has a fixed point.

Below, we define K as a nonempty compact convex subset of the strategy space
(R™)% x (R™)% 5 (A((R™))P x (A((R™)%)) PP,

by ruling out certain dominated strategies. Our strategy spaces are metrizable and hence Hausdorff.
The weak topology is induced by a family of seminorms (the integral with respect to continuous
bounded functions) and hence locally convex.

We construct ® as the best-response correspondence. We show below that the best-response
correspondences are upper hemicontinuous and nonempty compact-valued. Thus, by the closed
graph theorem, the graph of @ is closed. Finally, we show that the best-response correspondences
are convex-valued, through showing that the payoffs are concave.

Compact and Convex Strateqy Spaces: While strategy spaces are not compact, we can restrict
attention to compact convex spaces of undominated strategies.

As shown in Appendix D.7, party j would never choose a platform outside a certain compact
ellipse around their ideal points, £;. By Tychonoft’s theorme, the strategy space EJS is compact
(under the topology of pointwise convergence) and because &; is compact. It is convex because &;
is convex.

For a voter it is never optimal to report a posterior mean that lies outside of the convex hull
conv © of the support © because the posterior mean given any belief must lie inside this convex hull.
Because © is finite, conv® is compact, and therefore (conv®)® is compact. Because (conv ©)°
is also metrizable, A ((conv @)S ) is compact under the topology of weak convergence. The set
(A((conv ©)%))**P is compact under the pointwise topology of weak convergence.

The fictitional fourth player’s best response is never outside the compact space of strategies
(A((conv ©)%))¥*P of the representative voter.

Formally, we can restrict attention to the compact and convex strategy space
K = &% x & x (A((conv ©)°))PL x (A((conv ©)%))*P.

Upper Hemicontinuous Best Response Correspondence: We show that the voter objective U, is
upper semicontinuous in (4, s, 0,0¢) and continuous in (x4, 2y, 0f). Together with the feasibility
set of o being nonempty compact-valued and constant, it follows from the generalization of Berge’s
maximum theorem due to Tian and Zhou (1992), analogous to our proof of Proposition 7, that the

best-response correspondence is nonempty compact-valued and upper hemicontinuous.
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As a first step, the instrumental value of information is jointly continuous in players’ strategies.
The function v in (23) is uniformly continuous in (x,,zp) due to continuous differentiability over a
compact domain, and continuous in p by continuity of f,. Moreover, v is bounded by the compact
domain of (p,0,x.,xp) and by v having finite absolute first moment. Thus, by the Portmanteau
theorem, the integral in (23) is continuous under weak convergence of o(ps(s)|w,d). By uniform
convergence of the integrand in (x4(s), xp(s)), the integral is jointly continuous in (o, z4(s), zp(s))
(see (42)). By continuity of op(s|lw,0y) in oy and because the sum over (w,d, s) in (23) is finite,
the instrumental value is jointly continuous in players’ strategies.

As a second step, the information cost, which depends only on o, is lower semicontinuous,
making the voter objective jointly upper semicontinuous. By Posner (1975), the Kullback-Leibler
divergence Dkr,(P||Q) is jointly lower semicontinuous under weak convergence of P and Q. The

(@0):Ps ig just a finite average of the conditional distributions of pg conditional

joint distribution P
on (w,0), that is, o(+|w, d), so the joint distribution weakly converges as o weakly converges point-
wise. Similarly, the distribution PPS converges weakly as o does. The product measure P9 @ PPs
converges weakly if PPS does, which can be verified via the Portmanteau theorem by testing ex-
pectations E, 5,4 [f((w,0), ps)] under ((w, ), ps) ~ P@9) ® PPs of continuous bounded functions
f. Such expectations converge because they are weighted averages of expectations that converge
by the Portmanteau theorem, E(,, 5) »s [f((w,9),ps)] = > ¢ P@)(w, 8By, [f((w,d),ps)]-

Combining the first and second step, the voter objective is upper semicontinuous in (zq, x4, 0, 0 f)
and continuous in (4, s, 0¢).

The party objective U; is jointly continuous in players’ strategies by an analogous argument
to the voter’s instrumental value of information being jointly continuous. Thus, by Berge’s maxi-
mum theorem, the best-response correspondence of parties is upper hemicontinuous and nonempty
compact-valued and therefore has a closed graph.

The fictional player’s utility is not continuous but their best response oy = o is nevertheless
continuous in (x4, zp, 0).

Convex-valued Best Response Correspondence: The set of best responses o to (of,2q, ) is
convex, because U, is concave in ¢. The instrumental value of information is linear in o and the
Kullback-Leibler divergence c¢(o) is convex in the conditional distribution o: both the joint and the
product measure are linear in the conditional distribution ¢ and the Kullback-Leibler divergence
is convex.

For the party objective to be concave in xz,, we require again that m is small enough or the
valence shock is large enough, see Appendix D.7. By compactness of conv O, the set of distributions
of posterior means supported on conv @ is compact. Then, by an argument as in Lemma 27, for
m small enough or valence v large enough, the party objective is strictly concave and the best
response correspondence is single- and therefore convex-valued.

This concludes our proof of equilibrium existence. Next, we show that there exists an equilibrium
where party platforms respond to w only through (zj — 2%) " Aw.

Ezistence of an equilibrium with the desired properties: We show that there exists an equilibrium
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in which voters’ acquired signal structures do not distinguish between aggregate states w that

*

have the same A-projection on zj — x7,

(xy — x},w)a. Because party platforms respond to voter
preferences (Lemma 1), this implies that party platforms do not distinguish between such states.

Formally, there exists an equilibrium (x4, 2, 0, 0f) such that o satisfies the measurability condition
Vw,w' 8, ps: (xf —xh,w)a = (af — 2k, w') a4 — o(ps|w, d) = a(ps|e, 6). (24)

To show this, we restrict o and o to signal structures that satisfy the measurability condition
(24) and z, and x;, to functions such that the platform difference is necessarily parallel to the

ideological difference of parties,
Vs: xq(8) — xp(s)||2) — x. (25)

Formally, let K/ C K be the subset of strategies (zq,2p,0,0¢) € K that satisfy both the mea-
surability condition (24) and the parallelity condition (25). The space K’ is nonempty convex
subset of K’. Because K’ is a closed subspace of the compact space K, K’ is compact. Then, we
show that the best-response correspondence restricted to the subspace K’ maps into K’. By the
Kakutani-Fan-Glicksberg fixed-point theorem, there is an equilibrium where (24) holds.

First, parties’ best responses satisfies the parallelity condition (25) by Lemma 1. Because parties
care about the expected vote share, Lemma 1 also holds for any belief over the distribution of voter
preferences that parties share.

Second, the best response of o satisfies the measurability condition (24) if o does, because the
best response is simply oy = 0.

Third and finally, we prove that any best response o to (z4,xy,0y) satisfies (24) if oy satisfies
(24) and (x4, xp) satisfy (25). To prove this, we show that aggregate states with the same projection
on the ideological difference of parties are payoff equivalent. Because of the invariance property of
mutual information, voters optimal learning strategy does not distinguish between payoff equivalent
states.

Let w and W’ be such that (z} — z},w)a = (x} — z},w')a. If o satisfies (24), then the public

signal o), satisfies the measurability condition o, (s|lw, o) = op(s|w’, o) by

> uld)ay(- \w,5)>

Zp(é)af( . \w',5)) = op(slw’, o).
0

op(slw,op) = 0p (3

:O'p<8
* *

By (x} —x},w)a = (z} —x},w') 4, we have, for any 0, (z} —x,0) 4 = (x; —2},60) 4 where § =w+9

(26)
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and ¢’ = w' + 0. By the parallelity condition (25), this implies for all s € S

u(@a(s), ) — ul@y(s),0) = <xa(s) — ap(s),0 — %(S);L%(S)>A
+ zp(s)

- <xa(s) —ay(s), 0 — ‘””(5’>2>A — u(za(s),8) — ulzy(s),8).

Therefore,

U(p, 07 $a(3); xb(s)) =F, (U(wa(s)7p) - u(xb(s)ap» (u(a:a(s), 0) - u(wb(3)7 6)) —i—u(xb(s), 0)

~~

= u(za(s),0)—u(zy(s),0")

+ /°° vdF (v) (27)

u(ma(s),p)fu(:pb(s),p)
=v(p, 0, za(s), 2p(s)) + u(z(s),0) — u(zs(s),0).

The voter’s utility, neglecting the information cost, under action pg and state (w,?d), is
S 0y (slew, 07)0 (ps(), 0 + 6, 2a(s), 24(5)).
S

Equations (26) and (27) imply that this voter’s utility is the same under state (w’,d)—up to a

constant that does not interact with the action and is therefore immaterial:

> op(slw, op)v(ps(s),w + 6,34(s), z6(s))
- Z op(slw, o) <v (ps(s),w’ + 8, za(s), zp(s)) — w(ap(s),0) + ulzs(s), 0))
= opsle’ o) (v(ps(s),0 + 8, zals), a:b(s))> +Y 0,5l o) (u(ajb(s), 0) — u(wy(s), e’))

This shows that states (w,d) and (w,d) are payoff-equivalent. By information monotonicity of
mutual information (Amari, 2016; Caplin, Dean, and Leahy, 2022), any optimal signal structure o

does not distinguish between these states in the sense of (24). O
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B Appendix: Alternative Timing

B.1 One-Dimensional Policy Space
B.1.1 Results on Voter Learning

This section characterizes the optimal voter learning strategies and resulting expected vote shares
given party platforms z,, xp € R.

As discussed in the main text, the voter learning problem can be expressed as a function of the
distribution p € A(R) over posterior means. As is known, such a distribution p can be generated by
a Bayes-consistent distribution 7 € A(A(R)) over posteriors if and only if p <ypg p. The following

definition will be useful for the following.

Definition 1 (Feasibility). We say a binary set {0,,0y} is feasible if there exists a distribution p
over {0,,0}, p € A({0a,6p}), that is a mean-preserving contraction of the prior wu, p <pyps .

Note that if p is a mean-preserving contraction of u, then p has the same expectation as p,
which is 0. Thus, if 0 ¢ [0, 0p], then {0, 0,} is not feasible. On the other hand, if 0 € [0, 0], then
there is a unique distribution p over {f,, 0} with expectation zero. Thus, feasibility boils down to
whether this distribution p is a mean-preserving contraction of the prior pu.

Without loss, assume z, < x; and define

Tq + Tp Ty — Tg

Ou(xq, 1) 1= 5 PR
To+Tp Tp—T
Qb(lta,ltb) = a 9 % a'

Definition 2 (Binding feasibility). We say feasibility is not binding at (xa,xp) if the posterior

means {0q(zq, Tp), Op(xa, xp)} are feasible. Otherwise, we say feasibility is binding at (x4, xp).
The following proposition characterizes the solution to the voter learning problem.

Proposition 4. A solution p € A(R) to the voter learning problem given x4, x, € R exists and is

unique. Let 6 = 0(xq,xp) and O, = 0y(x4,zp). There are three cases:
(1) If {04,0p} is feasible, voters acquire the two posterior means 0, and 0.

(2) If 0, < 0 < 0y and {04,6s} is not feasible, voters acquire a threshold signal structure s(0) =
1(0 > t), where t € RU{—00,00} is more extreme than the party midpoint, that is, we have
0< “Tm <t,0= ””“Tm =t ort< “Tm < 0. As K decreases, the threshold t moves weakly

y y a+
closer to the party midpoint 3=,
(3) If 0 & (04,0y), voters acquire no information.

When voters acquire information, then one posterior mean 6, is always closer to x, and the
other, 0, is closer to ;. The expected vote shares of parties are simply the probabilities of posterior

means 6, and 6. These probabilities are uniquely pinned down by Pr,(6,)0, + Pr,(65)0, = 0.
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The following result summarizes the implications for parties’ expected vote shares and is crucial

for the analysis of endogenous party positions.
Corollary 3. There are three cases.

(1) If {0,,0y} is feasible, the expected vote share P, of party a is

1 kap+x
Po(wa, ) = 2 2qy — ma'
a

(2) If 0, < 0 < 0y and {04,6y} is not feasible, the expected vote share P, of party a is P, =
F,(t), where t is as in Proposition 4. If party a is more extreme, that is, |xq| > |xp|, then
Py(2q,1p) < 3 + fotta

2 xp—2xq

(8) If 0 & (04,0y), the party whose position is closer to 0 obtains all votes.

Interestingly, the expected vote share in the first case takes the same form as in the moderate
utility model (Halff, 1976; He and Natenzon, 2024).

Finally, the following corollary shows that costly voter learning generates a “bias” toward the
moderate party: the moderate party receives more votes than the true share of voters whose ideal

points are closer to its position.

Corollary 4 (Bias toward Moderate Party). Under |x,| < |xp|, party a obtains a higher expected
vote share P, than the true share of voters that are closer to x, than to xy, that is, P, > Fu(maTm)
The expected vote share of party a decreases as the information cost parameter k decreases or as

ma+xb

party polarization |z, — x4| increases, holding constant.

B.1.2 Proposition 4

Proof. Using (16), the voter’s maximization problem can be written, up to a constant, as a function
of the acquired distribution p over posterior means. By Strassen’s theorem, p is feasible if it is a

mean-preserving contraction of the prior . The voter solves

Tq + Tp T + Tp
plenAa&;g) ngp{max{(xb — Zq) (0 - ) ,—(xp — x4) <9 — 2) } — RQZ]

s.t. p <mps p

We first solve the relaxed problem where we relax the constraint p <yps u to IE(;NP[Q] = 0. Through
the coordinate change
ZTa + Tp

b=6- ==,
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Ta+Tp  Tp—Tq Ta+Tph Ta+Tph + Tp—Tq
2 2K 2 2 2K

Figure 6: The value function v(6)

the voter’s problem becomes

U(Q:Z
pénAa&(Q) Ess [max {(xb — 2)0, —(x — ma)é} - /1632}
Tg + Tp
s.t. EéNﬁ[G] = — 5

Because the value function v is symmetric around 0 (see Figure 6), the solution is obtained simply

by finding its maxima. The gradient of the value function is zero if 20 = z; — x4 or

A Tp — Xq
0= ——.
2K
Define
Tg+Tp Tp— Tq
9(1 = - )
2 2K
Tog+2Tp Tp— Tqg
g, = -2 )
b T

If the origin lies between 6, and 6, then the voter acquires the posterior means 6, and 6.

This is the solution if {6,,6,} is feasible. If {6,,0,} is not feasible, then a threshold signal
s(#) = 1(6 > t) is optimal by the following. The distribution p over {6,, 6} is the only solution
to the voter learning problem which satisfies the first-order condition of optimality of the relaxed
problem (see the Lagrangian Lemma in Caplin, Dean, and Leahy, 2022). Thus, the solution to
the non-relaxed problem must have a binding mean-preserving contraction constraint. The mean-

preserving contraction constraint p <ypg p can, by Strassen’s theorem, be written as

VteER: /t Fp(9)d9§/t F,(6)d6.

—oc0 —oco
If p is binary and the constraint is binding at some ¢, then p is induced by the threshold signal
with threshold ¢. Also, any threshold signal with threshold ¢ induces a distribution p with binding
mean-preserving contraction constraint. Note that we allow the threshold signal to have threshold
t = 400, in which case the voter acquires no information and unconditionally votes for the party

closer to the origin.
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If a threshold signal is optimal, the threshold ¢ is more extreme than £¢t2 by the following

argument. It is easy to see that the instrumental value of information b(t) is increasing as ¢ moves

closer to %Tm :

/t 2f(0)do + /too —(z, — 0)2f(0)do
= () = (—(va — 1) + (2 — t)?) f(t)

Note that b (Zafe) = 0.
The information cost decreases as t becomes more extreme if the prior is log-concave. The

information cost is
c(t) == Var[f] — (F(t) Var[0|0 < t] + (1 — F(t)) Var[0]|0 > t])
t _ 2

F?) 1 - F( )

V]~ (mgn{ [ 0~ 5000} 4 { / Oo(‘) - B “’W’D

Using the envelope theorem, we obtain the derivative

¢ (t) =f(1)(t —E9]6 > 1) — f(t)(t — E[9]0 < #])?
=f(t)(E[0 —t|0 > t]* —E[t — 00 < ]?).

By Theorem 1.C.52 in Shaked and Shanthikumar (2007), the conditional expectation E[6 — |0 > ¢]
is decreasing in ¢ for logconcave density of . By symmetry of f around 0, E[t — 0|0 < t] =
E[6 — (—t)|@ > —t]. Together, this delivers for ¢ > 0,

0<E[l—to>t] <E[0]6 >0 <E[—(—t)|0 > (—t)] =E[t — 0|0 <t

Thus, ¢(t) is negative if ¢t > 0.

Note that for et > 0, ¥'(t) > 0 and ¢/(t) < 0 for all ¢ < 2f% 5o ¢ = ot dominates any
t < 2ot Moreover, b/ (2e%) = 0 and /(2e%) < 0, so ¢ > 2 ig optimal. Recall that the
optimal distribution over posteriors is unique and thus the optimal ¢ is unique.

Restrict ¢ to [Ze322 o] (t = oo refers to always voting for party a). The utility b(¢) — re(t) is

supermodular in (k,t) by ¢/(t) < 0. Thus, the optimal ¢ is weakly increasing as a function of k. [

B.1.3 Corollary 3

Proof. The case (3) is immediate.

Case (1): By the law of iterated expectations, we have

Tg+ Ty Tp— Tq To+2Tp Tp— Ty 1 kKzy+ap
P, — 1-P =Ef=0=P,=-+ — .
“( 2 2k >+( “)< > T ox > g ¢ 2+2xb—xa
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E[0|0 > t'] 0 E[8]0 > t']
Figure 7: Value function and feasible posterior means under threshold signal ¢’

Case (2): That P, = F,(t) is immediate from case (2) of Proposition 1. The second part of the
statement follows from the following lemma.

Lemma 6. Let x4, xp be such that {0,,60y} is not feasible, |xo| > |zp|, and x4 < xp. The expected

ﬁxa+$b
2 xp—xq "

vote share P, of party a satisfies P, < % +

Proof. First, t is such that the induced posterior means E[f]0 < ] and E[#]|6 > ] are in between

the maxima {6, 0} of the value function,
0, < E[0l0 <t] < E[0]0>t] < 6, (28)

or the voter acquires no information. The reason is the following. If the posterior means were
outside the maxima of the value function, then the maxima would be a garbling of the threshold
signal, so the maxima would be feasible. Both posterior means need to be on different sides of
“Tm, otherwise the agent takes the same action regardless of the information they acquired and
no information would be better. Finally, it cannot be the case that

Tq + Tp
2

E[0]0 <t] < 0, < < E[0]0 > t] < 6,

because increasing the threshold ¢ marginally would increase both posterior means E[f|6 < t] and
E[#]6 > t], which would result in a higher value because the derivative of the value function is
positive at E[f|0 < t] and non-negative at E[0|6 > t], see also Figure 7. Analogously, the posterior
mean E[f|0 > t] cannot be to the right of 0. Thus, the posterior means must satisfy the ordering
(28) or t = +o0.

Second, consider the threshold ¢ that delivers the same vote shares as P, = % + %izfﬁ,
' =F; (P.). By |za| > |2s], Pa < 1/2, so by symmetry of p, ' < 0. By the law of iterated
expectations

0= P,E[0|0 <t'|+ (1 — P)E[0|0 > '] = P,6, + (1 — P,)6,.

Hence, there exists an o > 0 such that the induced posterior means satisfy

(E[0]0 < ), E[0]0 > t']) = (afa, aby).
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By {04, 6y} not being feasible, &« < 1. We show that the optimal ¢ satisfies ¢ < t, that is, the
binding mean-preserving contraction constraint benefits the moderate party. For that we use the

following Lemma.

Lemma 7 (Jewitt’s Lemma). A(t) := E[f|0 > t] — E[0|0 < t] is weakly decreasing in t for t < 0

and weakly increasing in t for t > 0.

Proof. Jewitt (2004) shows that A(t) is quasiconvex if the density of 6 is quasiconcave. Because 6
has a symmetric density around 0, A(t) is weakly decreasing for ¢ < 0 and weakly increasing for
t>0. O

We prove t < t' by showing that increasing ¢t beyond t' lowers the voter’s utility. Intuitively,
increasing t has two effects on the voter’s utility: it shifts the posterior means and it shifts their
probabilities. We show that both effects have a negative effect on the voter’s utility (consulting

Figure 7 may help visualize the following steps). First, note that we have for ¢t > t/,

—'(B[Ol9 < 1)) _ V(B[00 <)) _1-F(t)

VEGI > = V(E[G0 > 1] F{t)

A t > 0 is clearly suboptimal because —t would deliver an equal cost of information but higher

higher instrumental value of information. Under ¢t < 0, Jewitt’s Lemma implies

dA(t) __ dEIl0 <t] _ dE[6]9 > 1]

dt dt dt

Now, for any t with ¢ <t <0, as long as the ordering requirement (28) holds,

(Z(F(t)v(E[G\H <)) + (1 — F(H)o(E[6]o > t}))
—r ('@l < ) T 4 p i = ) OO Z0 ) (uEple < 1) - vEple > 1)
<0
<[Pty ©l0l0 < 1) + (1~ P/ Elo)p > 1)) d]E[eC'ZZt] + (@) (E[0)0 < 1)) <dE[9lZ <f_ dEw'jt = ﬂ)
<0
>0
<( P/ B0 < 1) + (1 - F)/(El6l > 1) ) ‘W <0
20 T

Therefore, t < t’ is optimal. O

This concludes the proof of Corollary 5. O

B.1.4 Corollary 4

Proof. We go through the three cases of Corollary 3 by increasing size of k. In each case, the

expected vote share is biased toward the moderate party and this bias increases in k. Increasing
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party polarization |z —x,| while holding “Tm constant, has the same effect on the voter’s objective
as decreasing x (and, at the same time, multiplying the objective by an irrelevant constant).

By Corollary 3, if (6,,6,) are not feasible, then the optimal signal is a threshold signal with a
threshold more extreme than the party midpoint, thus there is a bias toward the moderate party.
The threshold becomes more extreme as x increases, so the bias increases.

Let £ be such that {0,,0,} = {ZeF2 — gi’;:ﬁ, S g;:tﬂfs}, is just feasible. Then, these
posterior means are induced by a threshold signal, which by the above, is biased toward the mod-

erate party. For a higher k, the posterior means {6,,6,} move symmetrically closer to the party

s Anaint Loty
midpoint =45

. This increases the weight on the more likely posterior mean, so it increases the
bias.
If k is large enough, then voters acquire no information and just vote for the ex-ante more

attractive party, which is the moderate party. O

B.1.5 Lemmas on Party Positions

The following lemma describes properties of any equilibrium and partially characterize parties’ best

response. We use these lemmas in the proofs of Proposition 5 and Proposition 6 below.

Lemma 8. If x, < xj, then x, < xp in equilibrium. If 0 < xp, then x4 < xp in equilibrium. If

x; <0, then z; < x3 in equilibrium.

Proof. Recall that we restrict attention to equilibria where both parties obtain positive expected
vote shares and thereby positive probabilities of implementing their policies. The proof relies on
the fact that it is suboptimal for party j € {a,b} to choose a position z; that is further away from
z; than the other parties’ position z_; is from zj. The reason is, as argued above, that parties are
policy motivated.

First, we show x, < 3. Suppose, for the sake of contradiction, that x, > x and x;, < ;. If 2y

*
a
is at least as close to xj than z, is, then, given x; < z; and x, < x4, xp is closer to x, than is z,,
leading to a contradiction.

Second, we show z, < zp if 0 < xj. Suppose, for the sake of contradiction, that z, > z;. For
xp, to be at least close to z; than z, is, we need z;, < z4. If 2, < x4, this contradicts z, < xp. The
remaining possibility is z, = 2. By 0 < o7 < x4 = a3, this is not an equilibrium: party a could
choose z, — € for € small enough and obtain the full vote share and a better policy.

Analogously, one can show that z} < z; it 2} < 0. O]
Lemma 9. If 2} <0, then 2z}, < x4 in equilibrium. If 0 < xy, then xp, < 227 in equilibrium.

Proof. We prove the first statement by distinguishing between different cases for the position zy.
The proof of the second statement is analogous.
Consider first z; < 0. As shown by Lemma 8, in equilibrium z; > «. In equilibrium, z, is at

least as close to z as is xp, so 2z} < z,.
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K Tp+Ta
2 xp—xq

If 0 < z, and z, < x and feasibility is not binding at (z4,zp), then Py(z4,zp) = % +
is increasing in z, (this can be easily seen by differentiating P, (x4, xp) in x,). Thus, increasing x,
would increase both the vote share and the policy utility when wining, so x, is suboptimal. Thus,
in equilibrium, 2z} <z} < z,.

If 0 < 23, and z, < 2z}, is more extreme than z;, that is, |z,| > |z}, then Py (24, 73) < 3. Then,
xq = 0 delivers a greater expected vote share for party a (namely a vote share greater than 1/2)
and a greater policy utility when winning, so x, is suboptimal.

Consider, finally, that case that x; > 0, feasibility is binding at z, < z}, and z, is less extreme
than xy, that is, |z4| < |xp|. If 2,4 is less extreme than xp, then either party a obtains expected vote
share 1 (which we have ruled out) or a threshold signal is optimal with ¢ > “Tm > 1z, (that is, the
signal is biased toward the moderate party a) by Proposition 4. One can easily show that the voter
utility b(t) — kc(t) is supermodular in z, and ¢, when ¢ is restricted to ¢ > z,, so ¢ increases in x,.
Again, both the expected vote share and the policy utility when winning increase when raising x,,

S0 x4 < x is suboptimal. O
Lemma 10. Ifz} <0 <z} and k > 1, then the unique equilibrium is (xq,xy) = (0,0).

Proof. Under k > 1, the implemented policy is zero if one party chooses policy 0. This follows from
Corollary 3 and the fact that 6,(x4,xp) and 0y(z,,xp) are weakly between x, and z} for k > 1.
Therefore, (z4,2,) = (0,0) is an equilibrium.

By Lemma 8, z, < x3 in any equilibrium.

Suppose (24, ) is an equilibrium. The average implemented policy is weakly positive or weakly
negative. Suppose without loss that it is weakly positive. Then party a can obtain policy 0 for
certain by choosing x, = 0. This weakly improves the utility of party a because the policy outcome
is weakly better in expectation and has no variance. Thus, if the policy outcome under (x4, xp) is not
0 for certain, then this is a profitable deviation. Finally, if the policy outcome is 0 for certain, then
at least one party must choose position 0. The other party must also choose position 0, otherwise

only one party would obtain a positive vote share, violating our equilibrium definition. O

Lemma 11. If 0 <z, and 0 < xj, then either x, = 3 or
xy < xq <y <2z — ).
In particular, |z, — x4 < 2|xy — x|

Proof. By Lemma 8, z, < x;, and by Lemma 9, x;, < 2x;.

We show that z, = a3 or ) < z, in an equilibrium with positive expected vote shares. If
xq < x} and x, < xp, then (x4, xp) is not an equilibrium because Uy (x4, 2p) could be improved. If
Zq is more extreme than xp, that is, |x4| > |xp|, then z, must be negative and P, < 1/2. Then,
x!, = 0 delivers higher policy utility when winning and a higher vote share of at least 1/2, so z, is
suboptimal. If z, is less extreme than z3, that is, |z,| < |zp|, then increasing z, slightly improves

the policy utility when winning. Increasing x, slightly also increases the vote share. As argued
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in the proof of Lemma 26, if x, is less extreme than x; and x, < xp, then either party a obtains
expected vote share 1 (which we have ruled out) or a threshold signal is optimal with threshold
t> “Tm > x, (that is, the signal is biased toward the moderate party a) by Proposition 4. One
can easily show that the voter utility b(¢t) — ke(t) is supermodular in x, and ¢, when ¢ is restricted
tot > x4, so t increases in x,.

Thus, if z, # xp, then x, < 2} + (2} — x};). By the above, if z, # a3, then 2}, < z,. By Lemma
8, x4 < xj in equilibrium, so together x; < x, < ;. In an equilibrium with positive expected vote
shares, x; must be at least as close to x} as is x,. Because x, has at most distance |z} — ;| from

xy, T has at most distance |z} — x| from z} in equilibrium, so z, < 2z} — . O

Next, we provide a lemma that partially characterizes parties best responses. We need a few

definitions. Define

1+Exb+x“’
2 2xp—1x,

Ua(q,zp) := Pa(xa,:vb)u(wa, xy) + (1 - Pa(aja,xb))u(:vb, xy).

pa(fﬂaa wb) =

We call P, and U, the pseudo vote share and pseudo utility, respectively, because they are
equal to the expected vote share and expected utility of party a only if feasibility is not binding at
(24, ), by Corollary 3.

Lemma 12 (Best Response). Let x} < xf, K < 1, and x, € R. Define

i‘a = xz + 1_
Necessity: If x, is the best response of party a to xp and feasibility is not binding at (x4, xp),
then T, = Z4.
Sufficiency: If feasibility is not binding at (T4, ) and |Z4| > |zp|, then T4 is the unique best
response of party a to xp.

Analogous statements hold when exchanging a and b (maintaining x}, < xj ).

Proof. Necessity: If feasibility is not binding at (z4,xp), then party a’s objective is

Ua(Tq, zp) pa(xa, xp)u(x g, Ty ( o (Tas :Ub)) (xp, )
= (u(wq,z}) — u(xb, ))]5 (q, 2p) + u(p, ) (29)
=2 (3:; g —21- 33b> (24 — 2) <; + gi:jjj) + u(xp, )
= (l‘a;rﬂfb — x2> (zp(1+ k) — 2a(1 — K)) + u(zp, ). (30)

The last term is a constant and can be ignored. Since the domain of x, is unbounded and the
objective any z, further from ) than z; is dominated, the best response z, to x; must satisfy

the first-order condition %‘;’xb) = 0. Simple derivation shows that the unique solution to the
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first-order condition is

-~ *
Tq =2, + Tp.

1—-k
Sufficiency: To show that Z, is the best response if feasibility is not binding at (&, zp) and
|Za| > ||, we rule out step-by-step that any other z, could deliver a higher utility U, (z4, z5) than
Tq.
First, we rule out z, such that feasibility is not binding at (x4, ). If feasibility is not binding
at (zq,2p), then party a’s objective is given by ﬁa(xa,xb), which is negative quadratic in z, and
maximized at Z,. Thus, Z, is the best response among all such z,.

Inserting Z, into (30), we obtain that the resulting utility is

Tp

1— 2
Ualaras) = —5— (o —a2) +ulap,al) > ulap,a2), (31)

2 11—k

which we use below.

Second, we rule out z, that are at least as far away from x than is z;. Such z, deliver utility
Ua(xa,xp) < u(wp,z)) < Ug(Zq,xp), using (31). Therefore, x, delivers a lower utility than z,.
Intuitively, because party a cares about the implemented policy, it never makes sense to propose a
policy that is worse than its opponent’s policy.

Third, we rule out x, that deliver an expected vote share P,(x4,xp) of 0 or 1. If P,(z4,xp) =0,
then the resulting utility is Uy(xq, xp) = u(zp, 2)) < Uq(Zq, zp), using (31). Therefore, x, delivers
a lower utility than &,. Consider P,(z,,23) = 1, which can be the case if 0 is not between
0a(xa,xp) and Op(zq, ) or if {0,(xq, p), Op(xa, )} is not feasible, by Corollary 3. We show that
1< ]E’a(a:a,a:b). Assume, for the sake of contradiction, that x, delivers a higher utility than Z,.
x4 can only deliver an expected vote share of 1 if |x,] < |zp|. By assumption we have |zp| < |Zq].
Because &, and z, deliver greater utility U, than u(xp, x}), &, and z, are closer to x than is xy, by
(31). This leaves only the case that &, and x;, are on different sides of the origin and x, is between z,
and x. This implies that if z, delivers an expected vote share of 1, then P, > 1. The reason is that
if 0 is between 6, and 0, then 0, and 6, are feasible. Finally, if P,(z4,xp) =1 < Pa(:zzmazb), then
party a’s utility U, (x4, xp) is strictly less than Ua(xa, xp), because, by the above, x, is strictly closer
to % than zy. Further U,(z4,xp) is strictly less than max,: Ua(a!, x) = Ua(Zq, ) = Ua(Za, ).
Therefore, z, delivers a lower utility than z,.

Finally, consider the remaining possibility that feasibility is binding at (x4, xp), 24 is closer to
x; than is zp, and both parties obtain positive expected vote shares. We distinguish between three
subcases, depending on which of the three policies {x, Z4,zp} is between the other two.

In the first subcase, x, is between Z, and xp. One can easily verify that 0, (x4, ) and 0, (24, zp)
are between 0, (24, xp) and 0, (24, xp). Because {0, (4, 2p), Op(Zq, zp) } is feasible, { (04 (x4, zp), Op(xa, Tp) }
is feasible (if 0 is between 0, (x4, xp) and 6y(x4, xp)) or one party obtains all the votes (otherwise).
We have already ruled out both of possibilities above.

In the second subcase, xp is between Z, and x,. Because 2, delivers higher utility than z, = xy,

Zq is closer to x than is x. Thus, this subcase implies that x, is further away from z} than is x,
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which we have ruled out above.

In the third and final subcase, Z, is between x, and xj. By |Z,| > |xp|, this implies that |z,| >
|Z4| > |2p|. Thus, if feasibility is binding at (x4, ), then, by Corollary 3, Py(z4,2p) < Pa(za,xs),
50 Uy (g, ) is strictly less than U, (x4, ), by 2, being closer to x} than is xp. Further, Ua(a, xp)
is strictly less than (j'a(ﬁsa, xp) = Ug(Za, zp). Therefore, x, delivers a lower utility than z,.

By symmetry, analogous statements hold when exchanging a and b. O

B.1.6 Electoral Competition under Symmetric Setup

Proposition 5. Let x;, <0 <z = —x;. The following constitutes an equilibrium.
Party platforms Revealed voter ideology
k>1: Downsian equilibrium (x4, xp) = (0,0) p=194(0)

1 1
k € (k,1): Polarizing equilibrium (x4, xp) = (1 — k)(2,,23) p= 25(%> + 25<xb>
K K

This equilibrium is unique for K < k < 1/2 and for k > 1. For 1/2 < k < 1, the equilibrium is
unique if |z¥| < E[|0]].37

Proof. First, we verify that the candidate equilibria are in fact equilibria. Second, we show unique-
ness.
K K

Solving for a solution to the equations z, = ¥} + =2y and xp = ¥} + 175574, We obtain

(w0, xp) = (1 = K) (2, 73) (32)

if Kk € (0,1) and k # 1/2. By k > &k, the induced distribution over posterior means is feasible,
so feasibility is not binding at (x4, xp). By |24| = |xp| and the sufficiency part of Lemma 12, this
constitutes mutual best responses and hence an equilibrium.

Uniqueness By the necessity part of Lemma 12 and the solution to (32) being unique, there
cannot be another equilibrium (x4, ;) where feasibility is not binding if x # 1/2. Also, we have
ruled out (by our refinement) equilibria where one party obtains zero votes. Thus, it remains to
show that there are no equilibria (x4, xp) where feasibility is binding and both parties obtain positive
expected vote shares. Denote the equilibrium positions by (Z4,Zp) = (1 — k) (2}, x).

First, we show that it cannot be the case in equilibrium that both parties propose policies further
away from the origin than z, and Ty, respectively, that is, z, < T, < Tp < xp. Suppose without
loss that xp, is weakly closer to 0 than is z,. Then, by feasibility being binding and Corollary 3,
Py(xg,xp) < ﬁa(:na, xp). Because in any equilibrium with positive expected vote shares, x, must be
weakly closer to z than is zp, this implies that U, (zq, xp) < Ua(:ca, xp). By zq < —xp < Ty, —p

K

is closer to &, = o} + 177y > T, than is 4. So, f]a(:na,:nb) < Ua(—xb,xb). Finally, Ua(—azb,wb) =

3"We conjecture that this condition can be dropped. Further, we conjecture that the additional equilibria under
the knife-edge case k = 1/2 cannot be approximated via an arbitrarily small office benefit.
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Ua(—zp, p) because Py(—zp,xp) = Py(—xp,25) = 1/2. Together, U, (xq,xp) < Uy(—xp,xp) and
(24, p) is not an equilibrium.

Second, we show that there cannot be an equilibrium where z, > Z, or z;, < Zp. To show
this, we distinguish between x > 1/2 and k < 1/2, which affects whether best response of a party,
according to Lemma 12, is responsive to other party’s position less or more than 1-to-1 by %~ > 1
and % < 1, respectively.

Case 1: 1/2 <k < 1.

For the sake of contradiction, suppose xp < Zp. The proof for x, > Z, is analogous.

If (1 - r)z; < xp < Ty, then T, = x; + 152 is the best response of party a by the following.
First, it can be shown that under these conditions, P,(&q,xs) > 0, 80 04(Zq, ) < 0 < Oy(da, ).
Further, the distance |z — Z,| increases as x;, decreases by 1= > 1. The maximal distance between
xp and Z, is thereby reached at z, = (1 — k), in which case £, = (1 + k)z} and |z — &| = 2kx).
By

2z, < A = 2kz, < KA,

and Lemma 13, feasibility is not binding at (Z4,xp). Further, by |Z,| > |z and Lemma 12, Z, is
the best response of party a to xp. On the other hand, if x;, < (1 — k)z}, then the best response
xq must be closer to z} than xy is, so |xp — x4| < 2Kz} as well. By the above, feasibility is not
binding at (x4, zp) again. Thus, feasibility is not binding in the equilibrium, which we have ruled
out above.

Case 2: 0 <k <1/2.

Suppose party a chose a position z, in the direction of the origin from Z,, T, < x,. Define
A =124 — I, and Ty == 27 + 7524 Then, by 7= < 1, &, — &, < A. By z, < 2} (Lemma 8),
we have z, < &y, so together, |Ty — z4| < |Tp — Zo|. By Jewitt’s Lemma, feasibility is not binding
at (xq,Zp) or party a obtains all the votes. In the former case, Z; is the best response of party
b by |Zp| > |z4| and the sufficiency part of Lemma 12, so feasibility would not be binding at the
equilibrium. In the latter case, the best response of party b would give party b no votes. We have
ruled out both possibilities above. Analogously, we can rule out z, < Zp in equilibrium.

Lemma 10 concludes the proof. ]

B.1.7 Electoral Competition under Asymmetric Setup

Proposition 6. Suppose z}; < 0 < zj and |x}| < |xf|. The positions

1-=r N N
xa(K) = o ((1 — K)xy + Rxb>
1-x N X
xp(k) = = <(1 —K)xy + /m:a>
constitute an equilibrium for
ke <o, 3?2__%) U (aig;;b—_:%’ 1> and  max{|za(s)], ls(0)[} < KE[O].  (33)
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This is the unique equilibrium for k satisfying (33) if additionally |xj — x| < xE[|6]].
If k > 1, the unique equilibrium is (x4, xp) = (0,0).

Proof. Define

— X

_ T ) (ST
K= {FG € <O, 307 952) U <$Z e 1> ‘ max{|zq(K)|, |zs(k)|} < KE[O]0 > O]}

First, we verify that (z,(k), zp(k)) constitutes an equilibrium for £ €. Then, we show uniqueness.

Equilibrium verification If x > 1, then the unique equilibrium is (z4, zp) = (0,0) by Lemma
10.

Suppose k < 1. Using the mutual best responses

*
Tq =T, +

Lq
*
Ty = xp + 11— Tp,
one can solve for the unique solution
1—-k
Tq = 1—k)x: + mc*),
T 1-2k (( %4 b

=1 0. ((1 — K)xp + /m;)
if K #£1/2.
Part 1: We verify first that feasibility is not binding at (Z,, Zp)
Under k > 1/2, &, is more extreme than &, by |zj| > |z};|. The posterior means 6,(Zq, Zp) and

0y(Zq, Tp) are on opposite sides of the origin if

. Tg+ X Ty — T Ty —xk
0 < 0y(Zg,Tp) = a2 L. bQHa = k> -2 a

- 1
zp —3xr " 2
Under k < 1/2, Ty, is more extreme than Z, by |zj| > |z}|. The posterior means 6,(Zq4, Zp) and
0p(Z 4, Zp) are on opposite sides of the origin if

. Tog+Tp Tp—2T Tr—x 1
0>9a(l‘a,l‘b) =2 5 — 2% - = K < 3;,)*7_; < 5
b a

It remains to show that the prior is wide enough, so {,,6,} are feasible.
Define

A :=E[0|0 > 0] — E[0]0 < 0].

Lemma 13. If |zp — x4 < KA and 04(xq,xp) and Op(xq,xp) are on different sides of the origin,
then feasibility is not binding at (x4, xp).

Proof. By Jewitt’s Lemma, if 6, and 6, are on different sides of the origin and |6, — 0,| < A, then
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{04, 0y} is feasible.

Ty —T
16y — 04 _ Iz~ <A |z — x4 < A
O
We have
Ty —Tg = (1 —K)(zp — ).
Thus, as long as
Tp—T}
(1—r)(z} —2}) <kA Sk >K = —2
1 + Ibfiva
A
feasibility is not binding at (Z4, Zp) if 04(Za, Tp) < 0 < Op(Zq, Tp).
Part 2: It remains to show that Z, and &;, are mutual best responses when x € (k*, 3?*__3;“*) U
b a
x—xk
(x;;b—?)a:j; ’ 1)

For mutual best responses, by Lemma 12, the party with the more extreme policy platform
(party a if k > 1/2 and party b if k < 1/2) is playing a best response. To show that the party with
the less extreme policy platform, say a, is playing a best response, it is sufficient that feasibility is

not binding at (—xy, z3), by the following lemma.

Lemma 14. Let &, = v} + 15-2p. If 4 < 3 and feasibility is not binding at (L4, zp) nor (—y, 1p),

then z, is a best response to xp.

Proof. We know that 2, is a best response among the x, such that feasibility is not binding at
(24, p). We rule out step-by-step other z,.

Any z, > xp is suboptimal because it is further from 2 than x;, and Uy(Zq,xp) > u(xy, x)) by
(31).

Any z, with &, < 2, < xp is suboptimal by the following. The posterior means 6,(z,, zp) and
Op(zq, xp) are between 0, (24, xp) and Oy(24, xp). So, either feasibility is not binding, which we have
ruled out above, or party a obtains an expected vote share of 0 or 1. An expected vote share of 0
delivers utility u(zp, 2}), which is smaller than U, (%4, 2) and therefore suboptimal. If the expected
vote share is 1, then P, (x4, x) > 1 (by the posterior means (f,,6;) being feasible if on different
sides of 0), so Uy (x4, zp) < Ua(xa, xp) < Ua(:?:a, xp) = Ua(Za,xp), SO x4 is suboptimal.

Any z, with z, < &, and |z,| < |xp| has non-binding feasibility at (x4, xp), and is ruled out
above, by the following. If 2, < 0, then z, < &, < xp < 0 implies that |z,| > |xp|, a contradiction.
If, otherwise, xp > 0, then, because feasibility is not binding at (—zp,xp) and (&4, ) has non-
binding feasibility, feasibility must be non-binding at (x4, xp).

The remaining x, satisfy x, < &4, feasibility is binding at (z4, ), and |z4| > |xp|. Then, by
Corollary 3, either P,(z4,2zp) = 0, which we have ruled out above, or P,(xg,zp) < P, (a4, xp). If 4
is further away from x than z; is, then z, is clearly suboptimal. So, z, is closer to z} than is xy,

50 Ug(xg, xp) < Ua(xa, xp) < Ua(a%a, xp) = Ua(Za,xp), SO x4 is suboptimal. d

This implies the following lemma.
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Lemma 15. Let 2, = z;, + %= 2p. If (vp,K) and (L4, k) lie in the cone
% = {(x, K) ) 2| < KE[0]0 > O]},

and 04(Zq,xp) < 0 < Op(2q,xp), then T, is the best response to xp. An analogous statement holds

when replacing a and b.

Proof. Feasibility is not binding at (—xp,zp) because (—xp, k) lies in the cone € if (xp, k) does
and 0,(—xp,xp) < 0 < Op(—xp, xp). If (Z4,k) also lies in the cone, then |xp — x4 < KA. If
0a(Za,xp) < 0 < Op(Zq,xp), then feasibility is not binding at (#,,z) by Lemma 13. Then, by

Lemma 14, Z, is a best response to x. ]

As long as
max{|xa|, |zp|} < KE[A|O > 0],

both (z4, k) and (zp, ) lie in the cone €. If, additionally,

xf —xk i —xk
k€ |0, b* a | u *b a1,
3xy — x, x, — 3x,

then 04(Zq,xp) < 0 < 0p(Z4g,xp), so by Lemma 15, z, and x; are mutual best responses.

Uniqueness Let (24, 2p) be an equilibrium. By Lemma 8 and 9, we have 2z} < x, < xp < 2x7.

By assumption, we have 2|z; — x}| < KA, so
|zp — xq| < 2|xp — x| < RA,

so by Lemma 13, either feasibility is not binding at (x4, ) or one party obtains all the votes. We
have ruled out both cases. so by Lemma 13, either feasibility is not binding at (x4, xp) or voters
learn nothing. If feasibility is not binding, we have shown that the equilibrium positions must
be (z4(k), zp(k)). If voters learn nothing, then either one party obtains all the votes or z, = xy.
We have ruled out the former by our equilibrium definition. In equilibrium, it cannot be that
xq = xp by the following. Suppose, that x, = 2 > 0 (the other case is analogous). Then, z, would
obtain a positive vote share by choosing =/, = x, — € for £ small enough. This would increase the
utility Uy (4, xp) because the implemented policy is improved with positive probability (but never

worse). O

B.2 Multidimensional Policy Space

We prove Theorems 5 and 6 in parallel through multiple steps, building on our results for a one-
dimensional policy space. In section B.2.1, we show how the voter learning problem and the
electoral competition game reduce, in specific senses, to one dimension. In section B.2.2, we use
this reduction and the one-dimensional best response lemma 12, to prove a lemma on party best
responses in a multidimensional policy space. In section B.2.3, we verify that our equilibrium

candidate is an equilibrium using the sufficiency part of the best response lemma. In section B.2.4,
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we prove uniqueness using the sufficiency part of the best response lemma. Finally, in section B.2.5,
we consider the case k > 1.
B.2.1 Reduction to One Dimension

As stated in the main text, the voter’s maximization problem can be written, up to a constant, as

a function of the distribution p € A(R™) over posterior means 6.

pen&?ﬁgn) Eg, [max {<xb — Tq,0 — Ta ;L i >, —<xb — Tq,0 — Ta ;r xb>} — (0, 9)} (Pn)
S.t. p SMPS [4-

We define an equivalent one-dimensional voter learning problem using the following scalar pro-
jection on the line through the origin with direction x; — z,. We extend the scalar projection on

Tp — Tq, PIOjy, 4., 10 probability measures on R™ via the pushforward. Define

Toq = projmb_za (Ta)
Ty = Projy, s, (T6) (34)
f = Projy, —, (1)-

Now we can define (P1) as the following one-dimensional learning problem.

g By (G 20(0- 45 a0 ) ] e

s.t. p <mps [
The following lemma gives a sense in which the two voter learning problems are equivalent.

Lemma 16. A distribution p € A(R™) solves (Pn) if and only if proj(p) solves (P1) and p is

supported on the line through the origin with the direction xy, — x4.

Proof. Let p € A(R™) be supported on the line through the origin with direction xj, — z,. We show
that then the objectives of (Pn) and (P1) are equivalent. An equivalent way of representing 6 ~ p

is as é\lil;:iZH with § ~ p = proj(p). So, using the definitions (34), the objective of (Pn) can be
written as
EéNA [max {<xb — xa,é T~ Ta__ Tat xb>, —<xb — xa,é T~ Ta_ _ ZTat xb>} — Héz]
P ||zp — @al| 2 |2y — 2ql| 2
=E, ; [max {(i‘b — Zq) (é _Ta ;— xb),_(g}b — Iq) (é — %T—'—xb)} _ K@] ’

which is the objective of (P1).
By the following statement, the constraints p <ypc p and p <ypc proj(u) are equivalent: Let
p € A(R™) be supported on the line through the origin with direction xy, — xo. Then p <pps p if

and only if proj(p) <aps proj (k).
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The only if-direction follows directly from the fact that the mean-preserving contraction relation
is preserved by scalar projections.

The if-direction follows from the fact that p is already supported on a line that is preserved
by the orthogonal projection associated with the scalar projection proj. Thus, proj(p) <mps
proj(u) directly implies that p is a mean-preserving contraction of the orthogonal projection of p
on the line through the origin with direction xp — x,. The orthogonal projection of p is a mean-
preserving contraction of u because p is spherical. By transitivity of mean-preserving contraction,
proj(p) <mps p-

Collecting results, p solving (Pn) and proj(p) solving (P1) are equivalent for distributions p
supported on the line through the origin with direction x; — z,. This establishes the if direction.
For the only if direction, Theorem 1 implies that any solution p to (Pn) is supported on the line

through the origin with direction xp — x,. O

This reduction of the voter learning problem to one dimension allows us to apply results on
voter learning under a one-dimensional policy space. We generalize the definitions of feasibility
and binding feasibility (Definition 1 and 2) verbatim to the multidimensional policy space using
the definition of 0,(x4,xp) and (x4, xp) from (11). Proposition 3 follows from Corollary 4. By
Corollary 3, the vote share for party a is

I KIg+ap 1

P =z =3
a(:l:aa:l:b) 2+ 257b_'%a 2+2 |’$b_xa"2

& [[ap|[* = [|zal [

if feasibility is not binding at (x4, zp).

Now, we can show that also for parties there is an equivalence to a one-dimensional game, up
to constants, as long as their positions are on a certain line. The following lemma shows that the
party objectives are the same as if we consider the one-dimensional game where party positions and
ideal policies are projected on the line through the party positions x, and xp. Thus, if we restrict
party positions to lie on some line through the policy space, we can solve the game like the game
with a one-dimensional policy space. The result follows essentially from the quadratic preferences
of parties and the one-dimensional reduction of the voter learning problem.

Recall that each party j chooses its position z; € R" to maximize its objective

Uj(l‘a,mb) = Pa(xmxb)u(xaa x;) + (1 - Pa($a,$b))u($b, Z’;),

where P,(x4,zp) is the mass of voter revealed ideal points that are closer to x, than to xp, as
determined by optimal voter learning.

To introduce the equivalent one-dimensional model, we need the following definitions. Using
the same scalar projection proj on the line through the party positions, defined in (12), we define

Za, @p as in (34) and, additionally,

= proj:cb —Zq ($Z)

Ty = proij—xa (.’L’Z) .
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Party a’s objective in a one-dimensional policy space for z,,Z; € R is

~

Ua(Za, @) i= Poldia, 2p)i(Za, #5) 4+ (1 — Py(Za, &3))0(2, 27)

To+ T ..
% b)—i—u(wb,xZ)

= Py (80, 20)2(80 — 1) (55; -

where 4(x,y) = —(z — y)? and here P,(i,,4) is the mass of voter revealed ideal points that are
closer to Z, than to zp, as determined by optimal voter learning under a one-dimensional policy
space. Finally, let D? be the squared distance of z from the line through x, and .

The following lemma implies the party objective is the same as in the one-dimensional model

up to a constant D? that only depends on x, and x; through the line on which they are.

Lemma 17. The party utility Uy(xq, xp) satisfies

Ual@ass) = Ua(as i) + D = Palbiay#0)2(00 — ) (5 — “2 ) + (e, ).

An analogous identity holds after swapping a and b.

A

Proof. By Lemma 16, P, (4, xp) = Py(Zq,Tp). The party objective is

Ua(@as xp) = Pa(ta, 2) (w(a, 25) — ulzp, 7)) + u@p, v5)

= P,(iq, :i“b)2<xa — Tp, T — Ta ;L $b> + u(xp, )
= Balira 20)2(0 — ) (25— T iy, 25) + D?
= Ua(&a, @) + D?
where we have used Pythagoras theorem in the middle step. O

B.2.2 Multidimensional Best Response Lemma

The following lemma on best responses exploits the reduction to one dimension proven by the
above lemma. Following definition (13), let P(i_)yx 5, denote the orthogonal projection of R" on
the line through (1—k)z} and z;. Recall that we generalize the definitions of feasibility and binding
feasibility (Definition 1 and 2) verbatim to the multidimensional policy space using (11). Further,
we say feasibility is strictly non-binding at (x4, ) if there exists open neighborhoods N, N, of z,
and xy, respectively, such that feasibility is not binding for all (2, z}) with z, € N, and z} € Nj.

Lemma 18 (Multidimensional Best Response Lemma). Let k < 1, z, € R™. Define

. K
Lg 1= P(l*li)xz,lb (xa + 1_ ,‘ixb> .

Necessity: If x, is the best response of party a to xp and feasibility is strictly non-binding at
(zq,p), then x4 = Z4.
Sufficiency: If feasibility is not binding at (T4, xp) or (—xp,xp), then I, is the best response

to Tp.
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Proof. Necessity: Suppose z, is a best response to zp and feasibility is strictly non-binding at
(l’a, l’b) .
By Lemma 17,

St uan,at),

Un(2a, 25) = Pa(Ga, 3)2(20 — &) (;f:; -

where 24,2, 2 are again the scalar projections of x4, xp,x; on the line through z, and z,. If
feasibility is not binding at (x4, xp), then the vote share pa(xa, xp) equals the pseudo vote-share
~ 1 K SACa + i’b

Pa($a’$b):§+ 23y — &g
a

so the utility U, (x4, xp) equals the pseudo utility

- . s TatT *
Ua(zq,xp) :=Py(Ta, xp)2(Ta — xb)<xz - aTb> + u(xp, x})
1 /@ :L‘a + IL‘b) . Zo + Tp
—( = 2 o ( * ) , *
=((1 = R)Zq — (1 + K)&p) (i’* Tat xb) + u(xp, ) (35)

If feasibility is strictly non-binding at (x4, xp), then Uy(zq4, xp) is locally given by the pseudo utility.
If x, is a best response, then x, must be a local maximum of the pseudo utility Ua(aja, xp). Then,
the projection &, = proj(x,) must satisfy the first-order condition of (35). We know from Lemma
12 that the unique %, that satisfies the first-order condition is &, = 2 + 1 ~Zp. Inserting 7, and

simplifying, we obtain

Uatanea) = (1= ) (8 + ) = (14 )2 (52— =250 0

1 2
Ak ~ 1 Ak i’b *
= (W =myzs — ) 5 (35— T2 ) + ulan. )
1
=— (3 1—
50— (2y— (1 —K)E ) + u(xp, )
1 (zp— g, x5 — (1 — k)z*)? N
= + u(xy, ). 36
DI R A () %
If x, is a local maximum of the pseudo utility, then the direction Hza bu of z, from xy, given that

the projection Z, on this direction is optimally chosen, must be a local optimum of (36). The only
local optimum is when zj — x, is parallel to z; — (1 — k)2, that is, when xz, is on the line through
(1 —k)x} and xy.

Together, we have shown that z, is on the line through through (1 — x)x}; and z; and the scalar
projection of z, on this line is &} + =% The unique point that satisfies these two conditions is

Tq-
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Sufficiency: We know from (36) if feasibility is not binding at Z,, then

1
Ua(Za, 6) = m”iﬁb — (1= &)ag ]| + u(x, z5).
For any d € R™ with ||d|| = 1, define
1
Bld) i= g5 (= (1 K)zs))” + ulwy, 7)),

which is bounded from above by U,(Z4, zp). The following lemma concludes the proof.

Lemma 19. For any x, € R", the utility Uy (x4, xp) is bounded from above by
B ( Ty — Tq ) .
|lzo — zall
Proof. First note that by (36) the pseudo utility

- - R s Tat+ 2
Ua(xaaxb) = Pa(xaa xb)Q(l‘a - ZL’b) (xa - = 9 :

)+ ulas, 7).

is bounded from above by B(=22).

llzo—all

Let d € R™ with ||d|| = 1. We show that among all z, with the same d(z,) = H?;:ZII’ no I,
obtains a higher utility than B(;2=2e).

[y —zall
If z, is at least as far from z} than zy, then Uy(xq, 2p) < u(xp,x)) < B(d). Suppose for the

rest of the proof that z, is strictly closer to z, than z.

If feasibility is not binding at x,, then the vote share equals the pseudo vote share, so the utility
Ua(24,zp) equals the pseudo utility, which we have argued is bounded from above by B(d).

If feasibility is binding at (x4, zp), then by Proposition 4, either the origin does not lie between
the maxima 6, and 6 of the symmetrized valued function, or voters acquire a threshold signal. If
the origin does not lie between 0, and 6, then either a receives all votes or b receives all votes.
If a receives all votes, then P,(zq,x) = 1 < P,(24,23), so the utility is bounded from above
by the pseudo utility. If b receives all votes, then U,(z4,z5) = u(xp,x)) which is not greater
than B(d). Finally, consider the case that voters acquire a threshold signal. Because feasibility
not binding at (—xp,xp), by Jewitt’s Lemma, z, must be further away from 0 than x;. Thus,
Pa(aza, xp) < ﬁa(xa, xp), by Corollary 3, case (2). Again, the utility is bounded from above by the
pseudo utility. O

This concludes the proof of sufficiency. O

B.2.3 Equilibrium Verification

Using the best response lemma, we verify that the polarizing equilibria of Theorem 5 and Theorem
6 are in fact equilibria.
First, we turn to the equilibrium under the symmetric setup. If x < 1, [|z}|| = ||zf]|, and

5| z2| < E[|)9]]], then (zq,25) = (1 — &)(z}, z;) is an equilibrium by the following. If z;, =
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(1= r)ap and ||zg]| = [|27]], then

Pa_ryzs oy (:EZ + xb) = P(x, + kzp) = (1 — k)x),.

11—k

If 1=5||2%|| < E[||0]|], then feasibility is not binding at (1—k)(—x},z}) or (1—k)(z}, z}). Together,
by Lemma 18, z, = (1 — k)], is a best response to z;, = (1 — k)x;. By symmetry, x; is a best
response to z,.

Next, we turn to the equilibrium under the asymmetric setup. One can verify that the positions

(z4(K), zp(K)) satisfy
. K
Tj = Pu-waye; T + 7.0
from the best response lemma, using Proposition 6. If max{||z.(k)||,||zs(k)||} < &E[[|6]]], then

feasibility is not binding at (1 — k)(—x},x}) or (1 — k)(x},x}). So, by the sufficiency part of the

best response lemma, (z4(k), zp(k)) is an equilibrium.

B.2.4 TUniqueness

We prove uniqueness in three steps, under
|z — gl < &E[[|6]]].

First, we establishing bounds on z, and x; that must hold in any equilibrium (z4, ;). Second,
show that given these bounds, feasibility is not binding (z4, z3) if (x4, xp) is an equilibrium. Third,
we use the necessity part of the multidimensional best response lemma to reduce the problem to
one dimension and then apply our uniqueness results under a one-dimensional policy space.

First Step: Bounds

Let (x4, xp) be an equilibrium. We prove the following bound on party polarization:
||y — 2all < 2y — 25]l-

If (x4, xp) is an equilibrium, then (x4, zp) is also an equilibrium when both parties are restricted to
positions on the line through x, and z;. By Lemma 17, we can use bounds on equilibrium platforms

under a one-dimensional policy space. Let x, # x; (otherwise, we are done) and define

Tq 1= Projy, 4, (Ta)
Ty 1= projy, 4, (Tp)
g := Projy, 4, (z3)
h 1= Projy, g, (24)-
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In an equilibrium with positive expected vote shares, we have

lwa = ag||* < [lzy — 23]

[l — 25 ]* < ||z — 25,

Adding up these equations and collecting terms, we obtain Z, < Zyp.

These are two cases. Either 2} and #; are on different sides of 0 or they are on the same side.
By symmetry, for the second case we can restrict attention without loss to 0 < 27,0 < 7.

Case 1: 7; <0 < 77.

By Lemmas 8 and 9,

This implies
|z — @al| = 25 — £a| < 2|35 — 25| < 2z — 27][. (37)

Case 2: 0 < 2,0 < Zj.

By Lemma 11, , = &3 or

This implies

|y — 2all = |2y — Za| < 2|2y — @] < 2y — 2g]l-

Step 2: Feasibility not binding
In both cases above, we have ||z, — zp|| < 2|z} — «||. Recall that M is the distance
between the posterior means 6, and 6.

By assumption, ||z; — z}|| < KE[||0]|], therefore

[y = @al| < 2|} — 3| < 26E[|[6]]] = —— < 2E[|[9]l].

The distance between the posterior means of symmetric threshold signal is 2E[||f||]. By Jewitt’s
lemma, the distance between the posterior means of any threshold signal is at most 2E[||0||]. Thus,
the mean-preserving contraction constraint on voter learning is not binding in equilibrium.

Feasibility can thus be binding only if voters learn nothing. This implies that one party obtains
all the votes (which we have ruled out by our equilibrium definition) or z, = x,. We rule out
T, = xp by the following.

First, (zq,2) = (0,0) is not an equilibrium under x < 1. We have assumed that z} # 7,
thus at least one party’s ideal policy is not 0. Without loss, assume z} # 0. Then, party a could
profitably deviate by moving toward its own ideal policy, which under x < 1 delivers a positive
vote share.

Second, we rule out (z4, ) = = # 0 using the following lemma.

Lemma 20. If x # 0 is not on a line through 0, =, and xj, then (x,x) is not an equilibrium.
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Proof. Let z, = xp, = x # 0. We show that (x4, ) is not an equilibrium.

If = is not on the line through 0 and z, then in any e-neighborhood of = there is a point 2’
that is closer to both 0 and z} (2’ can be obtained, for example, by moving z in the direction
3(z; — ) + 3(0 —z)). For a small enough ¢ > 0, if a adopted the position 2/, this would lead a to
obtain all votes and a higher policy utility conditional on winning. Thus, 2’ would be a profitable
deviation for party a.

Analogously, if  is not on the line through 0 and z}, b would have a profitable deviation. []

If 0, z;, and xj are not jointly on a line, then x cannot be on a line through all of them, so
by Lemma 20, (z,z) is not an equilibrium. Finally, consider the case that z, 0, and x} are on a
line and = # 0 is on said line. We have assumed that x} # xj. Thus, for Theorem 5, ||x}|| = |[|z}||
implies that 0 is between the projections of z; and zj on said line. Therefore, there is not an
equilibrium where z, = xp = x by a similar argument as in the proof of Lemma 20: at least one
party would profit from moving slightly closer to the origin, obtaining all the votes and moving
the implemented policy closer to its ideal policy. For Theorem 6, we have assumed that the scalar
projections of x; and xj on the line through zj, and z; are on different sides of 0. Thus, by the
same argument, there is not an equilibrium where x, = =, = x.

Third Step: Reduction to one dimension

We have established in the first two steps that in any equilibrium (z,, ), feasibility is not
binding. Then, by the necessity part of the multidimensional best response lemma, z, and x; are
on the line through (1 — )z} and (1 — k), namely (24, 2) = (1 — k)(x},z;). By Lemma 17 and

Propositions 5 and 6, the equilibrium positions are unique.
B.2.5 Equilibrium if x > 1
Define
‘%2 = projx;—z:; (‘TZ)
7 1= DrOjye s (a):
Lemma 21. If k > 1 and 2}, < 0 < Z}, then the unique equilibrium is (0,0).

Proof. First, (0,0) is an equilibrium. The reason is that under £ > 1, the implemented policy is

0 if one party chooses position 0. This follows from Corollary 3 and the fact that 0,(z,, ) and

Op(zq, xp) are weakly between x, and x;, for k > 1. Hence, no party has a profitable deviation.
Second, we show uniqueness. Suppose, (z4,zp) # 0 is an equilibrium. Define

= proj:cb—:ca (.’L‘Z)

= proja:b—a:a ($Z)

We distinguish between two cases.
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First, consider 2; < 0 < Z;. By Lemma 17, we can apply Lemma 10 for x > 1 to obtain that
(24, p) 18 not an equilibrium.

Second, consider the case that 0 is not between Z and #7. Without loss, suppose, 0 < Z;, and
0 < Z;. By Lemma 11, either

zy < xq < mp < 215 — T

or x, = xp. In the former case, party a obtains all the votes, contradicting our equilibrium definition.
In the latter case, by Lemma 20, this is not an equilibrium if z, = x; # 0 if the line through z,
and z; does not go through xj;, and xj. The line through z, and x; does not go through x; and xj

because otherwise 0 would be between Z; and Z; by z; <0 < Z}. O

83



C Appendix: 10 Extension

C.1 Lemma 2

Proof. In a pure-strategy equilibrium, consumers anticipate product locations, which induces a
one-dimensional distribution of revealed preferences (Theorem 1).

Suppose without loss that revealed preferences are supported on the line spanned by

Solving for Equilibrium Profits: First, we show an equivalence between multidimensional
product locations x,,xp € R™ and one-dimensional pseudo-locations Z,,Zp € R in the sense that
the the utility difference is the same,

Ta + Tp

2
= 2(xp — Tq, €1) a01 + ((Ta, Ta) a4 — (To, Tp) A)

(@p, o) 4 — (Tay Ta) A
=260, — - day
( ! 2(xp — xg,€1) 4 (b = Tas e1)

u(xy, 0) — u(xy, 0) = 2(0 —

,Th — Ta) A

) (91 _ Za ;L l’") (& — a) = @(Ep, 01) — (da, 61)

where 24, 25 € R are uniquely determined by
Ty — Bq = (Tp — Ta,€1)A

i'a + §3b _ <xb7wb>A - <xa7xa>A
2 (Tp — Tase€1)A

Because the utility difference is a sufficient statistic for subsequent behavior of consumers, this
implies behavioral equivalence of consumers. This behavioral equivalence allows us to use results
from Anderson, Goeree, and Ramer (1997) to determine the equilibrium of the pricing subgame
and characterize equilibrium profits as a function of product locations z, 3.

Assume without loss that z, is to the left of xy, that is, (z4,e1)a < (xp,e1)4. (Under equality,
prices are zero, which is not an equilibrium.) Following Anderson, Goeree, and Ramer (1997), we
define £ € R as the indifferent type given &,,2, € R (and the resulting equilibrium prices), which

is defined implicitly via
Ta+Tp 1—2F(E)

2 T

As Anderson, Goeree, and Ramer (1997) note, for log-concave F, the term

§= (38)

1-2F(€) o non-increasing
f©

in £ and there is a unique solution to (38). Moreover, it follows that the solution is strictly increasing

in %ﬂ They show that the equilibrium price is p, = 2(Zp—24) F(£)/ f(§) and therefore equilibrium
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utility (profits) U, for firm a are

F(¢)
Us = 2¢(&p — 2g) = F ().
‘ “rE)
Projecting x,: Suppose x, € R" was not on the line of revealed consumer preferences. We show
that given any xp € R™, product location x, is dominated by its projection z, = <<Z11’+‘1‘>>2‘61 on the

line of revealed preferences. Recall that the one-dimensional pseudo-locations &4, Zp € R, which we
use to characterize equilibrium profits, are a function of the multidimensional real locations x4, Tp.
To show that equilibrium profits for firm a are higher under %, than under z,, we show first note

that the difference of the corresponding pseudo-locations is the same,

Tp(Tay ) — Ta(Ta, p) = (Tp — T, €1) 4 = (Tp — Ta,€1) A = Tp(Ta, Tp) — Ta(Ta, Tp),

because Z, and x, have the same inner product with e; by construction of Z,. This implies that

the implied midpoints of pseudo-locations are ordered,

i'a('%aaxb) + i’b(fi’a,fl'b) o <$bawb>A - <i’a7i'a>A o <$b7xb>A - <:i'a7:i'a>A

2 (xp — Tq,€1)A (xp — xq,€1)A
<xb7wb>A - <xavxa>A _ ia(xaaxb) + i'b(l'ml'b)
(xp — xq,€1)A 2 ’

because (x4, Tq)A > (Ta,Ta)a and (zp — x4,€1)4 > 0.

We noted above that £ is strictly increasing in “TH“’ Thus, the last equation implies that ¢ is
larger under Z, and x; than under x, and x.

This implies that profits U, are higher under Z, than under z,. The differentiation of pseudo-
locations , — &, is the same under Z, as under z,. But the indifferent type £ is higher. By
F(&)/f(&) and F(§) being strictly increasing, equilibrium profits are strictly higher Z, than under
Tq-

We now know that, in equilibrium, firms choose product locations on the line of consumer’s
revealed preferences. We also know from Theorem 1 that the line of consumer preferences has
direction Y A(xp — x4). If product locations z, and x; are on said line, then x, — z, is parallel to

Y A(xp — x4). This is the case if and only if x, — x, is an eigenvector of Y A. ]

C.2 Theorem 7

Proof. Fix a v;, i € {1,...,n}. We look for equilibria where product locations (z,,z}) are on the

line spanned by v; and consumer learning is to be about the A-projection

<Ui7 9>A

(vi, Vi) A 0= {virB)a - v

of their ideal points on v;. By Lemma 2 all equilibria are of this form.

To find such equilibria, we can reduce the model to one dimension by projecting the product
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space on v;. The utility of consumers for product location Z - v; given ideal point 0 - v, is
—(E v —0-v)TA@E v, —0-v;) = —(& — 0)2.
The distribution of ideal points projected on v; is N (0, 05) with

2 T
o, = AY. Av;.
Normal signal structures induce normal distributions p = N (0,02) over posteriors means with

2
I

Anderson, Goeree, and Ramer (1997) analyze a one-dimensional Hotelling model under quadratic

posterior variance o2, where 02 = Ug + 02 by the law of total variance.

consumer preferences u(z,0) = —(x — 6)?, 2,0 € R, and an exogenous log-concave distribution of
consumer preferences. Using their Corollary 1, we know that given the distribution over revealed
preferences p = N (0, ag) with density f,, the unique equilibrium product attributes z and prices p

are characterized by

3 3
Ti=—X,=xp = —— = —V27w0,, 39
=De=pp=C¢C S 3no? (40)
p L pa - pb - 2fp(0)2 - P

To solve for the optimal standard deviation of consumer preferences o, given z, and x;, we write the
consumer’s instrumental value of information of the normal distribution 7 over normal posteriors

m as as function of o,:

E, [Eﬂ[ max {—(0 — x;)?} —p” E-[ - (|Ex[0]] - ) — o2 —p)

j€fa,b}
= E. [ — Eq[0)? + 20E,[|0]] — 2% — 0% — p]

2 8 2 2
—Jp—i-\/»xo'p—x —0,—p
m
8
2 2
\/;anp—l' —p—oy,

K (10g(27mi) - log(27ra72r)) =K (log(ai) —log(02)) .

The information cost is

Neglecting constants, the consumer chooses o, to solve

8
2 1 2 2
max \/;:L‘O‘p—l-li og(o,, —0,)

9p

s.t. 0 <0, <oy
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The second derivative of the objective

2 _ 2 2 2 2
—2(0; —0,) — 4o, 207 — 4o, <0
(07 — 03)? (07 — 07)?

is negative, so the first-order condition is sufficient for optimality. Supposing the inequality con-

straints are not binding, we get the first-order condition
—— =", (41)

Defining d := \/8/71' /K, the equation has a unique positive solution

1 12
0'p:—8+ g +UM

that lies between 0 and 0, so the inequality constraints are satisfied. Thus, the first-order condition
(41) characterizes the unique optimum of consumer learning.
Inserting equilibrium product locations (39) into the first-order condition (41) of consumer

learning, we obtain

3 20, 9 2

JE— — J— 2 e —
Eap_ﬂ = o0,=0 V o 0'p—3li.
Thus, under 2x/3 > 03 = v;r AX Av;, there is a unique equilibrium without learning, product
differentiation, and markups,
Upzoa xa:xb:07 pa:pbzo'

Else, there is an additional equilibrium with learning, product differentiation, and markups,

2 3
0/2, = JZ — glﬁ?, —Xg = Tp = Z\/27rap, Pa = DPp = 37ra§.
This concludes the proof. ]

C.3 Corollary 2

Proof. By the proof of Theorem 7, consumer utility (whether ex ante or ex post) is

8
U;, = —ai + \/;J,‘O'p —22—p—k (log (ai) — log (O’i — ag)) .
When %fi > 03, then a small change in k does not change the no-learning equilibrium and consumer
utility remains —03.
When %/1 < ai, a change in k has a direct effect on consumer welfare through the information

cost and an indirect effect through o,, =, and p. By the envelope theorem, the indirect effect
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through o, is zero. Using

3 3 2
T = Z\/27T0'p: Z\/Q?T 02—5,%,
— 3702 =37 (02 — 2k
p=3mo, =31 |0, — 3k |,
the total derivative of consumer utility with respect to k is

d dr d dp d 0
2T dede (=2?) %dfp(—p) T o (—#(log (o) —log (o7, — o))

_ %(_2@») 4 %(—1) - <log (02) — log <§H)>
:<_V@ﬂ-<—§V@ﬂvp>—%w——<kg(ai)—log<§ﬁ>>

80,

(12 (e s (26))

Thus, increasing the cost parameter x has constant positive marginal effect of (14+3/8)m on consumer

TN

utility through lowering product differentiation and prices, and a negative effect through its direct
effect on the cost of information. The latter effect is becoming less strong as k increases. Thus,
voter utility is quasi-convex in k.

Setting the total derivative to zero, we obtain that minimal consumer utility is achieved at

<1 + 8) m = log (ai) —log <g) = (15)™ = 7“ = K= 367(1+§)ﬂ02 ~ 0.0405.
Thus, consumer utility is maximal under £ > %ai or under x = 0. Under xk = %ai, consumer

utility is —az. Under xk = 0, we have 0, = 0, and consumer utility is

8
lg_—vj+Vme—x2—p

83 9
= —O'Z + \/;4\/ 2%02 — gwai — 371'03

9
:JE (—1+3—87T—37T> <—(TZ.

Thus, consumer welfare is maximal under x > %O’Z.
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D Appendix: Other Results and Proofs

Throughout, we use the notation (x,y) 4 := 2" Ay.

D.1 TImperfect Observation of Party Platforms

Our results on voter learning are, under some assumptions, robust to voters observing a noisy
signal about party platforms before learning about ideal points (under a timing where parties move
before voters learn).

Suppose that platforms are stochastic and independent of each other and of voters’ ideal points.
This stochasticity may stem from parties making random errors when choosing their platforms or
from parties having stochastic and private ideal points, similar to Matéjka and Tabellini (2021).
Further, assume that, after a common signal about platforms, voters acquire a signal about their
ideal points. Because both signals preserve the independence of platforms and ideal points, the
expected policy utility from voting for unknown platform x under unknown ideal point 6 can be

written as
Elu(z,0)] = w(E[z], E[0]) — E[(z — E[z]) " A(z — E[z])] — E[(6 — E[0])" A(6 — E[9))].

Up to the constant E[(z — E[z]) " A(z — E[z])], the agent’s utility is as under known platforms, (3),
except for replacing the platform z with the expected platform E[z]. Thus, our results from section
3 remain to hold after replacing party platforms with their expectation.

If voters observe heterogeneous signals about platforms, this creates heterogeneity in their
learning strategies, such as the direction in which they learn (cf. Theorem 1). However, as long as
their signals about platforms are similar enough, our results should carry over approximately. As a
consequence, an extension of our model to heterogeneous signal may explain the empirical finding
that the ideal points of politically better informed citizens are better described by a low-dimensional
model (Converse, 1964; Hare, 2022), since better informed voters should have more homogeneous

information about platforms.

D.2 Existence and Continuity

We show the set of maximizers of the voter learning problem are nonempty and upper hemicontin-
uous in the appropriate topology. We cannot show this using Berge’s maximum theorem because,
for an infinite state space, the Kullback-Leibler divergence, which is part of the objective, is only
lower semicontinuous and not continuous. Berge’s maximum theorem requires a continuous (and
not just upper semicontinuous) objective to show upper hemicontinuity of the argmax correspon-
dence. Although our objective is only upper semicontinuous in the choice variable, it is continuous
in the parameter (the value function). Using this observation, we can apply the generalization of
Berge’s maximum theorem by Tian and Zhou (1992) to obtain our result.

To apply the result by Tian and Zhou (1992), we first note that the set of Bayes-consistent
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distributions
X = {r € A(AR")[E,[7] = u}

is compact with respect to the weak topology by Kartik, Lee, Liu, and Rappoport (2022), Lemma 4.
They show this result for any sigma-compact Polish state space by applying Prokhorov’s theorem
twice. For the interested reader, we include a shorter proof for the state space R™ by using a

compactification argument.

Lemma 22. The set of Bayes-consistent distributions X is compact with respect to the weak topol-

0gy.

Proof. Denote by R"U{oo} the one-point compactification of R™, which is an embedding. The space
R™ U {oo} is homeomorphic to the unit n-sphere, so it is a (compact) Polish space. By Aliprantis
and Border (2006), Theorem 15.14, the pushforward of the embedding induces an embedding
between Polish spaces A(R") — A(R™ U {oo}). By iteration of this argument, this induces an
embedding A(A(R")) — A(A(R"U{oco})). Under this embedding, the image of X is the set
X = {1 € A(A(R"U{0}))| [ mdr = p}. The space A(A(R"U{o0})) is compact because R*U{oc}
is a compact Polish space. The set X is the preimage of a singleton {x} under a continuous function
7 — [ mdr, so it is closed. A closed subset of a compact space is compact, so X is compact. The

set X is the preimage of X under an embedding, so X is compact. O

Next, we prove a general maximum theorem for information-design problems on non-compact
state spaces and for upper semicontinuous and bounded-from-above value functions. As above,
define X as the set of Bayes-consistent distributions 7 € A(A(R™)) over posteriors 7 € A(R")
endowed with the topology induced by weak convergence. Define Y as the set of upper semicon-
tinuous and bounded-from-above value functions v from A(R"™) to RU {—oc}, endowed with the
topology induced by uniform convergence. Here, upper semicontinuity is defined with respect to

the topology of weak convergence on A(R™). Define f: X x Y — R as the expected value

F(rv) = / o(m)dr(m).

Proposition 7. The argmax correspondence of the information design problem,

M:Y =X
M (v) := argmax f(T,v),
TeX

18 nonempty compact-valued and upper hemicontinuous.

Proof. For the proof, we use Theorem 1 in Tian and Zhou (1992). It shows that in a maxi-
mization problem, if (1) the objective is upper semicontinuous and feasible path transfer lower
semicontinuous and (2) the feasibility correspondence is nonempty compact-valued, closed and up-
per hemicontinuous, then the maximum correspondence is nonempty compact-valued and upper

hemicontinuous.
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First, we show upper semicontinuity of f in (7,v). Suppose 7, converges weakly to 7 and v,
converges uniformly to v. We abbreviate [v(m)dr(w) by [wvdr and show that lim, e f(7n, vn) —
f(r,0) <0:

lim | v,dm, — /vdT = lim </ v dT, — /vdm) + </ vdTy, — /UdT)
n—oo n—o0
= ILm (vp, —v)dr, + (/ vdr,, — /vd7'>
lim /|vn —v|dr, + lim (/ vdT, —/vd¢> <0 (42)
n—oo n—oo

In the last line, the first limit is zero because v,, converges uniformly to v and 7, is a probability

IN

measure. By Villani (2009), Lemma 4.3, v being upper semicontinuous and bounded from above
implies that 7 +— f vdT is upper semicontinuous, so the second limit is less or equal to zero.

Second, we show feasible path transfer lower semicontinuity, which is introduced by Tian and
Zhou (1992). The objective f is feasible path transfer lower semicontinuous in y with respect
to feasibility correspondence F' if for each (z,y) € X x Y with z € F(y), there exists some
neighborhood N (y) of y such that Vy' € N(y), 32’ € F(y') satisfying

f(z,y) < liminf f(2',y/).
y' =y

Because in our case, Vy € Y: F(y) = X, we can choose #’ = z for all ¢/. Then, for any sequence
Yn — Y

T}gngof(w,yn) Z/yndx Z/ydl’: f(z,y)

because y,, converges uniformly to y and z is a probability measure. So, f(z,y) < liminf,/_,, f(z,v').
Key is that while our objective may be discontinuous in the choice variable, it is continuous in the
parameter (the value function).

Finally, in our case, the feasibility correspondence is nonempty and constant. Hence, it is closed

and continuous, and thus also upper hemicontinuous. It is compact-valued by Lemma 22. O

To apply Proposition 7, we show the value function of the voter learning problem,
E, [max {Eﬁ[u(xa, 0)], Ex[u(zs, 0)] + VH — wD(n||p) (43)

is indeed upper semicontinuous and bounded from above. The only property of the information

cost that this result uses is lower semicontinuity of the Kullback-Leibler divergence.
Lemma 23. The value function, (43), is upper semicontinuous in m and bounded from above.

Proof. We separately show upper semicontinuity and boundedness from above for the information
cost —kD(7||u) and for the instrumental value, E, [max{E,[u(xz4, 0)], Ex[u(zp, #)] + v}], of informa-

tion. Then, the their sum is upper semicontinuous and bounded from above.
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The divergence Dk, (+||u) is bounded from below as it is non-negative and lower semicontinuous
by Posner (1975), Theorem 1. Thus, — Dk, (7||p) is upper semicontinuous and bounded from above.

Define the instrumental value of a posterior V (7) as
V(r) = B, | max {Exfu(za, 0)], Ex[u(z, 0)] + v }].

The utility u(z,0) = —(z — )T A(x — 6) is continuous (and hence upper semicontinuous) in
and bounded from above by zero. By Villani (2009), Lemma 4.3, the function 7 — E[u(z,0)] =

[ w(z,0)dr(9) is upper semicontinuous in 7, and it is bounded from above by zero. Further,

o0

By [masc{l, 7 + v}] = 1F,( — ) + (1 — B,(1— 1)) + / sdF)(s).

l—r

Because valance v has a continuous distribution, F), is differentiable. Thus, E,[max{l,r + v}] is
continuous in [ and . Thus, V (7) is upper semicontinuous.
Further,

oo

IE,(Il—=r)+r(1—-F,(l—1)) +/

l—r

1
sdF,(s) < max{l,r} + 3 / |s|dF,(s),

so by boundedness of Er[u(z,8)] from above and v having a finite first absolute moment, the

instrumental value V (7) is bounded from above. O

Corollary 5. A solution to the voter learning problem (P) exists.

Proof. Follows immediately from Proposition 7 and Lemma 23. O
Finally, for our proof of Theorem 2, we show the following result.

Lemma 24. The value function, (43), converges uniformly as the valence shock converges in mean

to zero.

Proof. Let m € A(R™). The information cost —xD(7||x) does not depend on the valence shock and
can thus be ignored. The other component of the value function is the instrumental value, which

we write as V (m, F},) as a function of the posterior 7 and CDF of v,
V(m, F,) = / max{E;[u(zq,0)], Ex[u(xp, 0)] + s}dF,(s).
Write | := Ex[u(zq,0)] and r := Ex[u(xp,0)], so V(7 F,) = [7° max{l,r + s}dF,(s). For v

degenerate at 0, that is F,(v) = 1,50, we have V (7, 11,501) = max{l,r}. We show V(m, F,)

converges to V(m, 14,>0y) as v converges to zero in mean.
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First, consider the case that [ > 7, so V(m, 1{,>0}) = [. Then,

= / T ldR,(s) < /_ Z max{l, + stdF, (s)

—0o0

:V(W,Fy):l—i—/ max{0,r — 1+ shdF, (s)

o)

& 1
<l —l—/ max{0, s}dF,(s) =1+ 2/ |s|dF,(s)
0

—00

1 o0
=1<V(m F,)<Il+ 2/ |s|dF,(s),

—00

where we have used the symmetry of v in the third line.

Second, consider the case that r > [, so V(m,1{,>0)) = . By symmetry of the density of v,

rz/oo rdF,,(s):/oo (r+s)dF,,(s)g/_Zmax{l,r+s}dFy(s)

—00 —00

=V(n, F,)=r+ /_Oo max{l —r, s}dF,(s)

(o ¢] 1 oo
<r —|—/ max{0, s}dF,(s) =r + 2/ |s|dF,(s)
1 o0
=r<V(mF)<r+ 2/ |s|dEy,(s).

Together, we have

1 o0
V(r,F) = V(m Lysa))| = Vi F) —max{t, )| < 5 [ [sldu(s).

—00

Thus, V (m, F,) converges uniformly to V (7, 11,>0y) as v converges in mean to zero. O

D.3 Distance-Based Information Costs

The proof of Theorem 1 uses only Blackwell monotonicity (step 3), posterior separability (step
2), and a notion of reflection invariance (step 1) of the information cost. Thus, the result holds
for all information costs that satisfy these conditions. More precisely, step 3 of the proof uses
that the Kullback-Leibler divergence is strictly convex in its first argument for posteriors with
finite divergence, to show a strict mean-preserving contraction in posterior space strictly lowers the
information cost. Step 2 of the proof uses linearity of the information cost under mixing between
distributions over posteriors, which follows from posterior separability of the information cost.
Step 1 uses that the Kullback-Leibler divergence is invariant under the constructed reflection Ref,
Dyxr,(Ref(m)||Ref(p)) = Dxy(||p). This holds for all invariant divergences (Amari, 2016), which
remain unchanged under any transformation of the state space. In fact, for invariant divergences, we
sketch a somewhat shorter proof of Theorem 1 in the proof of Lemma 25. Other notable examples
of invariant divergences, besides the Kullback-Leibler divergence, are the Rényi divergences, which

have a foundation based on Blackwell dominance under repeated observation (Mu, Pomatto, Strack,
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and Tamuz, 2021).

Furthermore, the proof of Theorem 1 generalizes beyond invariant divergences to certain distance-
based divergences. Information costs based on invariant divergences have been criticized because
they imply that any two states are equally costly to distinguish. The literature has, inspired by ev-
idence from perceptual experiments, proposed distance-based information costs that make it more
costly to distinguish between closer states (Hébert and Woodford, 2021; Pomatto, Strack, and
Tamuz, 2023). Recall that in step 1 of our proof we use that the divergence D satisfies

D(Ref (m)[| Ref(u)) = D(l|n)

where Ref is a reflection across a line that preserves the prior u. Because the prior p is elliptical
with covariance matrix X, the prior is preserved by members of the orthogonal group of inner
product £, which is {Q € R™*"|QTE71Q = X~ '}. Reflections across a line are those members
of the orthogonal group that deliver the identity function when applied twice and that have a line
as the subset of the space that is invariant under the mapping. If the divergence D is invariant
under all such reflections, then step 1 of our proof works for it. We proceed to show this condition
is satisfied for certain distance-based divergences. The upshot will be that the information cost
needs to be based on a distance that is compatible with inner product ¥ 1.

While there is no generally agreed upon definition of distance-based costs, we assume that if
a posterior-separable information cost is based on distance d: R™ x R® — R, then it should be
invariant under isometries of d. Recall that a bijection g: R® — R" is an isometry of d: R” x R" —
R>g if Yo,w € R™: d(v,w) = d(g(v),g(w)). Intuitively, if we relabel the states such that the
distance d is preserved, the cost of information should not change. This should be seen as a
minimal implication for an information cost to be based on distance d, which makes our results
stronger than had we imposed a stronger requirement. Below we show that versions of recent

proposals for distance-based information costs satisfy this condition.

Definition 3 (Distance-Compatible Information Cost). A posterior-separable information cost
c(1) = E;[D(r||n)] on state space R™ is compatible with distance d: R™ x R™ — Rxq if for all
isometries g: R™ — R™ of d

D(x||p) = D(g(m)llg(1)),
where g: A(R™) — A(R™) is the pushforward induced by g.

Particularly important in our context are the standard Euclidean distance on R", d(v,w) =
(v—w)"(v—w)) Y 2, and the (non-standard) Euclidean distance induced by a symmetric, positive
definite matrix C, d(v,w) = (v —w)" C(v — w). That is because we need the information cost to
be compatible with a metric d of the state space R™ such that the reflection Ref in our proof is an
isometry of d. Using the fact that Ref is an isometry of the distance induced by £~!, we can easily

prove the following corollary.

Corollary 6. Let the information cost be posterior separable, ¢(1) = E.[D(r||p)], consistent with

the standard Euclidean distance, the divergence D be strictly convex in its first argument, and the
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prior be spherical, > = I,,. Then, the induced posterior means are on the line through the prior
mean and A(xy — xq) under any optimal information 7.

More generally, maintaining posterior separability, and convexity of the divergence D, let the
information cost be consistent with the Fuclidean distance induced by symmetric, positive definite
matriz C and the prior be spherical in an orthonormal basis of C, that is 71 is a multiple of C.
Then, the posterior means are on a line through the prior mean and Y A(x, —x4) under any optimal

information T.

Proof. Ref is a reflection with respect to ¥~! and thus an isometry of the distance induced by
¥~ By ¥7! = kC with k € R, Ref is also an isometry of the distance induced by C. Thus,
D(r||n) = D(Ref(m)|| Ref(i)) and our proof of Theorem 1 applies. O

Intuitively, our proof of Theorem 1 requires that a reflection that preserves the prior (so the
reflection defines a Bayes-consistent distribution over posteriors) to preserve the information cost.
The elliptical prior with covariance matrix X is preserved by reflections with respect to the inner
product induced by ¥~!. Thus, we need the information-cost distance to induce the same geometry
as X!, This is the case if the information-cost distance is based on an inner product induced by
matrix C where C' is a multiple of 1.

Finally, we present a few examples of information costs that are compatible with the Fuclidean
distance induced by a symmetric, positive definite matrix C. Strict convexity of these divergences,
for posteriors with finite divergence, is either known or can be shown. (The first example is strictly

convex only for posteriors that do not share the same mean, which suffices for the proof of Theorem

1.)

Example 1: Posterior-Variance Cost A multidimensional version of the posterior-variance
cost can be defined as the divergence Dy, being a second central moment (a generalization of

variance to arbitrary metric spaces),
2 2
Dae(mlln) = B | — d(6,Ex[6))°] = / —d (6, Ex[f])*dn(0),

where d(v,w) = Vv Cw and C is a symmetric, positive definite n x n-matrix. Under any bijec-
tion g on R™ that preserves the inner product (-,-)c, the information cost is preserved, that is
D(g(m)||lg(n)) = D(r||p), which can be seen by

Dyanl®llg(u)) = [ ~d (6. Ex[6]) *dy(m)(6)

—d(9(9), Ex[9(9)])*dr(6)
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Here, we have used that a bijection that preserves an inner product is linear and hence commutes
with the expectation operator. That Examples 2 and 3 below are compatible with the Euclidean

distance can shown in a similar fashion.

Example 2: Neighborhood-based Cost For state space R™, Hébert and Woodford (2021)

propose the Fisher information cost, based on divergence

2
Delln) = | . c<e>Wde

for posteriors m with density fr (and infinite divergence if the posterior is not absolutely contin-
uous with respect to the Lebesgue measure) and where ¢() captures how costly it is locally to
differentiate between states. If ¢(6) = ¢ is constant, one can show similar to above that the cost is

based the standard Euclidean distance.

Example 3: Log-Likelihood Ratio Cost The log-likelihood ratio (LLR) cost, introduced
and axiomatized by Pomatto, Strack, and Tamuz (2023) is defined for finite state spaces ©. Po-
matto, Strack, and Tamuz (2023) show, given a full-support prior, the LLR cost is posterior-

separable with divergence

Dusntrll) = 3 500,00 S gho (T00).
0,0/cO
if m(#) > 0 for all § € © and infinite otherwise. The coefficients 3(6,6') capture how hard dis-
tinguishing between states 6 and ¢ is. If © C R™ and 3(6,0') = f ((0 — ¢')TC(6 — ¢")) for some
function f, then it can be easily shown that the cost function is based on the Euclidean distance
induced by C. While finite state space is not appropriate for our analysis since we assume the the
prior p is elliptical, we conjecture that under an appropriate generalization to infinite state spaces,

the resulting LLR cost remains distance-based in our sense.

D.4 Corollary 1

Proof. We denote the k party platforms by z;, j € {1,...,k} and assume the utility of voting for
candidate j under ideal point 0 is u(x;, 0) + v;. Define the valence vector v := (v;);e(1,...k}, Which
can have an arbitrary distribution.

Analogously to the proof of Theorem 1, we first show the instrumental value of information 7

depends only on the projection of the induced distribution over posterior means on the (k — 1)-
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dimensional subspace spanned by {z; — z1}—2 -

E.|E, :mjax {Ew[— (0 — 5,0 — z5) ] +Vj}]]

=E, |E, | masx { — (2,2;) + 2(2j, Ex[6]) 1 + vj}]] — E,[(0,0)4]

=E, |E, :mJaX{ — (@), 2504 + 2(xj — 21, Ex[0]) 4 + VjH + 2<$17Ew[9]>A] -G

J

=E,|E, _max{ — <1'j,-%'j>A + 2<$j — xl,EW[HDA + I/j}}:| —C1+ 0y

where C} = E,,[(,0) 4] and Cy = 2(z1,E,[0]) 4 are constants and in fact zero under our prior. In
the second line, we used the law of iterated expectations. In the last line, we used that the inner
product is linear, to apply another law of iterated expectations. Thus, only the projection of E[6]
on {xj — x1}j—2, k is payoff-relevant.

To replicate the second part of the proof of Theorem 1, we need to again define an appropriate
reflection that preserves the instrumental value of information as well as the prior. Analogously to

above, we let Az; := ¥ A(xz; — z1) and define the reflection as

k

(AZ;
Ref(0) = 2 (A5 O)p Az; — 0.
efi (6 Z A:J;],Ax] sl
J=1

If ¥ = A = I, this is just the standard reflection across the space spanned by {z; — x1}j—2 &
In general, it is the suitable reflection that preserves the A-projection on this subspace as well as
the prior (since it is a ¥~ !-reflection). The second part of the proof of Theorem 1 applies using the
reflection Ref;, instead of Ref. ]

D.5 Proposition 1

Proof. First, we show the conclusion of Theorem 1 still holds under the restriction to normal
distributions. This implies voters’ candidates for optimal signal structures are one-dimensional
and normal. Hence, the candidate signal structures are completely Blackwell-ordered and thereby

ordered by information cost.

Lemma 25. Restrict the prior p and feasible signal structures to be normal. The conclusion of
Theorem 1 still holds; that is, revealed voter ideal points are on the line through the prior mean
with direction X A(xp — x4).

Proof. Under the restriction to normal signal structures, the reflection argument underlying our
proof of Theorem 1 does not hold anymore because the better signal structure, constructed by that
proof, need not be normal. Instead, we apply an argument based on a so-called pre-garbling, which
shows for all invariant information costs such as mutual information that agents learn only about the

partition of payoff-equivalent states (Amari, 2016; Caplin, Dean, and Leahy, 2022). If the acquired

97



signal structure was not measurable with respect to the partition of payoff-equivalent states, one
can construct a better signal structure based on a pre-garbling, that is by, for each state, obtaining
the average distribution over signals conditional on the partition element of the state (Caplin, Dean,
and Leahy, 2022).3® The resulting signal structure does not distinguish between payoff-equivalent
states and it is better because it is cheaper and equally instrumentally valuable. It is not hard
to see that such a pre-garbling maintains normality of the signal structure. Thus, also under the
restriction to normal signal structures, the optimal signal structure is measurable with respect to
the partition of payoff-equivalent states, which in our case are those states 6 that have the same
A-projection (xp—x4,0) 4 on the platform difference x, —z,. To obtain the result of Theorem 1, two
additional steps are necessary. First, suppose the voter learns the A-projection S = (x, — x4,0) 4
of the state 0 on xp — x, perfectly. Upon learning S = s, by joint normality, the posterior mean

would be

Cov(6, S
E[]S = s] = E[0] + (s — E[9]) - m = ¢(s) Cov(h,S) = c(s)ZA(xp — x4),
where ¢(s) is a scalar and we have used the normalization E[f] = 0. Thus, the posterior means
induced by S are on the line characterized by Theorem 1. Second, given that the voter actually
acquires some garbling of S, the induced distribution over posterior means is a mean-preserving
contraction of the one induced by .S. Hence, the resulting distribution over posteriors means is also

supported on the line characterized by Theorem 1. ]

Second, we show the comparative statics regarding the cost parameter k. The voter’s objective
is supermodular in x and in the cost of information ¢(7). Thus, a smaller x implies a greater cost
of information ¢(7) in the strong order. The one-dimensional normal distributions over posterior
means are completely ordered by the mean-preserving spread relation, which coincides with the
ordering by variance. Thus, a greater cost of information implies a greater variance.

Third, we show the comparative statics regarding the degree of platform polarization «. By
Lemma 25, the distribution p of revealed ideology can be written as p = XN (0,0/2)) with X :=

SX(zp—wa) _  EX(zp—zj) . PR .
ToX(zy—za)] = [oX(zi —z2)]]" We show the value of information is supermodular in the standard

deviation of revealed ideology o, and the degree of platform polarization «. This implies that the
optimal variance is increasing in the strong set order in . Because the cost of information does not

depend on «, it is sufficient to show the instrumental value of information is supermodular in o,

and a. By z;] Azy, = x] Az,, we have (2}, — 4, Z25%2) 4 = 0. Using this and (16), the instrumental

38To be more specific, let S be a normal signal (modeled as a random vector), that is (S, 0) are jointly normal. Let
P(6) := (xp —xa,0)a = (A(zp — ma))TH. The distribution of the pre-garbling S conditional on some state 6 should be
identical to the distribution of S conditioned on the partition of payoff-equivalent states of 6, {8’ € R™|P(0") = P(6)}.
Formally, we have

S|P(6) ~ N (E[S] + ZspZ5' (P(0) — E[P(0)]), 55 — ZspXp'Eps) .
where Ysp, ¥p, and Xg are the relevant (cross-)covariance matrices of P(6) and S. We can define the pre-garbling
S via
S =E[S|P(0)] +¢

where ¢ ~ N'(0,%s — XspXp' Eps) is independent of §. Signal and state (S,6) are jointly normal.
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Xg + Xp 0
2

Figure 8: The value function v(f, ) as a function of  for two values of . The higher alpha
corresponds to the steeper value function, which offers a higher return to information.

value of information as a function of o, and a, V(0,,®), can be written as an expectation of the

one-dimensional variable 6,

V(0p, @) = Egoxnr(0,02) [Bv [ max { — (alzj — 27),0) 4, (a(ay — 27),0)4 +v}]]
= Ejn0,02) {U(éa 04)} =Ezn0,1) [U(UpZ, 04)] ,
with

v(f,a) :=E,[max { — a (zj — z X)Aé,a@z—wZ,XMé—i—u}].

a’

=:A :\rA
For illustration, we graph the value function U(é,a) as a function of 6 for different values of a
in Figure 8. To show the instrumental value V(o,,«) is supermodular in ¢, and «, we show

ﬁv(am ) > 0. We have

d? d?
Vio,,a)=E,. Z——v(0,74,a)|. 44

Assuming A > 0 (the other case is analogous), the derivative of the value function v(6, «) in 6 is,

using the envelope theorem,

A A A 1
ddév(e,oz) = —aA 4 2aAF,(aAf) = 2aA <Fy(0¢A0) - 2) )

By symmetry of v, the factor in brackets has the same sign as 0. Both factors are increasing
in absolute value in «. Thus, this term is positive and increasing in « if 0 > 0, zero if 6 = 0,
and negative and decreasing in a if § < 0. Because (44) includes Z as an additional factor, the

cross-derivative is positive. O

Finally, we argue that our result is, under some conditions, robust to a common component of
ideal point. Suppose there is both a common component and an idiosyncratic component of the ideal
point, 0; = w + §; where w ~ N (0,%,,), §; ~ N(0,%s), and w and all ¢; are mutually independent.

By the proof of Lemma 25, voters acquire noisy signals about the A-projection of their ideal point on

99



the platform difference, 0 := (A(xp—x4)) " 0. Defining & := (A(xp—24)) w and § := (A(zp—24)) 0
analogously, we can treat the voter’s learning problem as a one-dimensional problem where they
learn about § = & 4§ where & ~ N(0,02) and § ~ N(0, ag), with 02 = (A(zp — 24)) " SwA(zp — 24)
and ag = (A(zp—24)) " Z5A(xp—2,). It remains to show the variance of the idiosyncratic uncertainty
in (??) is increasing in the informativeness of the signal, or decreasing in the noise variance o2 of

the normal signal S = 6 + e. This is the case if and only if

2 2 2 2 2

d O—{D_}_O'g 9 9 d 0-3+O-E

d0'2 <o’2 —1—02—1—02 (05 +05) <0 d0'2 2 <0
e \7e T s Te 5(02—1—05—1—0’3)

2
<=>(O'2,+O’§+U§) —2(0{%4—0?) (oﬁ—i—a?—ka?) <O<:>Ug,<0§+a§,

2 2

which is implied by o5 > 0 That is, the monotone comparative statics holds as long as the

variance U? of the idiosyncratic component (when A-projected on the platform difference zp — x,)
is greater than the variance Jg of the common component (when A-projected on the platform

difference x, — x,).

D.6 Proposition 2

For brevity, we refer by property L to the property that ideal points are on a line when projected
onto the space spanned by the survey questions, as defined in the main text.

It is known (e.g. Ladha, 1991) that the one-dimensional spatial model with quadratic utility is
equivalent to the one-dimensional item-response theory (IRT) model, which the empirical papers
we referred to estimate (Jessee, 2009; Jessee, 2012; Tausanovitch and Warshaw, 2012; Shor and
Rogowski, 2018; Fowler, Hill, Lewis, Tausanovitch, Vavreck, and Warshaw, 2022).

The IRT model is given as follows. Let y;; denote the response of individual 7 to question j,

which can be either 1 or 0. Under a one-dimensional IRT model, the likelihood is given by
Pr(yij = 1) = ®(oy + B;pi),

where @ is the logistic or the normal cumulative distribution function, o, 3; € R are question-
specific parameters, and p; € R are individual-specific parameters.

In our proof, we show (Part I) if a multidimensional spatial model has property L, then there
is a one-dimensional IRT model that is observationally equivalent, and (Part II) if there is a one-
dimensional IRT model that is observationally equivalent to a given multidimensional spatial model,
then the spatial model satisfies property L. Because of the equivalent to of one-dimensional IRT

models to one-dimensional spatial models with quadratic utility, this establishes our result.
Proof. First, in the spatial model, we have
(zj1 — bi) — (zj2 — bi) = (A, 0; — )

Tj1+T;52
2

where Ax; := ;1 — xj0 and T; := . We suppose that the same response item is not part of

100



two different questions, which seems to be satisfied in practice, so there are no restrictions that
or ;o for different j are the same.?? Hence, there are no restrictions on Az; and T;, and we can
reparametrize the model through {Axz;,7;,0;} instead of {x;1,x;2,0;}.

The multidimensional spatial model with parameters {Axz;,Z;,6;} is observationally equivalent

to the one-dimensional IRT model with parameters {«a;, 3;,p;} if and only if
Vi, j: <A1’j, 0; — fj> =a; + ﬁjpi (45)

Part I Suppose the multidimensional spatial model satisfies property L. Then, define

Then, (45) holds by
(Ax;,0; — ;) = (Amj, 00 — T; + NAO +0) = o + B\

and the IRT model with parameters {a;, 3;,p;} is observationally equivalent.

Part IT If there is a one-dimensional model that is observationally equivalent to the multidimen-

sional spatial model, then (45) holds, which implies

(Azxj,0; — 01) = Bi(pi — p1)-

Take ¢ = 2, then the projection of 6 — 67 on all Ax; is given, so o — 01 is uniquely pinned down
in the space spanned by {Az;}. For any other i > 2, §; — 61 is B;(p; — p1) = %(Aa:j, 0; — 61).
Thus, the projection of 6; — 61 on the space spanned by {Az;} is a multiple of the one of 6 — 6.

Thus, property L holds. ]

D.7 Sufficiency of First-Order Conditions for Equilibrium Platforms

Recall that in the context of Theorem 3, all our equilibrium candidates, that is pairs of platforms

(24, zp) that satisfy the necessary first-order conditions of optimality, are of the form
(J?a, xb) = 04(1‘2, 1‘2)

with a € [0,1]. It remains to show these platforms are indeed best responses to each other, that is,
the first-order conditions are sufficient for optimality in these cases.

First, we show in Lemma 26 that it is sufficient for equilibrium candidates to be equilibria that
party objectives are quasi-concave on certain compact subsets of R™. Second, we show in Lemma

27 that when the weight on vote share m is small enough or the valence shock v is large enough,

39This condition is sufficient but not necessary for our proof.
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then this condition for quasi-concavity is satisfied. By comparison to existing results (Lindbeck
and Weibull, 1987; Enelow and Hinich, 1989), our proofs are complicated by the fact that voter
ideal points are not bounded because we assume a normal distribution in Theorem 3.

For the first part, we make use of the fact that any platform choice x; outside the ellipse defined
by u(x;, x;") > —m is suboptimal, as we have shown at the beginning of the proof of Lemma 1. To
formulate the sufficient condition for equilibrium candidates to be equilibria, define

Ey ={z eR(x —2*) T A(x — %) < m}

a a

& = {z e R"|(z —a}) " A(z — z}) < m}.

Further, recall that because of the normal prior © = N (0, X) and the restriction to normal signals,
the distribution p of posterior means is necessarily normal. Also, it is supported on the line
through the origin with direction ¥ A(xp — x4). By the law of total variance, the variance of the
normal distribution is bounded by the variance of the prior in that direction. Let R the set of all
distributions p satisfying these three requirements.

With these definitions, we can state the sufficient (but not necessary) condition for equilibrium

candidates to be equilibria.
Condition 1. The following holds.
o Uu(xq,ms,p) is quasi-concave in xq, on &, for all xy = ax} with a € [0,1] and p € R.
o Up(za,xp, p) s quasi-concave in xp on & for all z, = ax} with a € [0,1] and p € R.
Lemma 26. If Condition 1 holds, then all equilibrium candidates are equilibria.

Proof. For an equilibrium candidate, (x4, 2p) = a(z}, ;) with a € [0, 1], party a’s best response is
in the ellipse &,, as argued above. Quasi-concave utility over &, under the equilibrium x; and any
feasible p implies that the first-order condition is sufficient for optimality of x,. The same holds
for x. Thus, the equilibrium candidate (x4, xp, p) is an equilibrium as both platforms are best

responses. ]

Next, we give assumptions that ensure that Condition 1 holds. Lemma 27 uses the following
assumption on the density of the valence shock, which is satisfied for example by the normal density
and the Laplace or double exponential density. This assumption is far from necessary but it suffices

to show certain terms vanish faster than a polynomial term diverges, which we use in our proof.

Assumption 1. The density of the valence shock f,(x) is proportional to exp{—g(z)} where g(x)
1s of the form

|z|™ i m odd
g(x):CO—Cl‘fU|—62$2—03|x|3—...—cm- .

T if m even

with ¢1, ..., Ccm > 0.
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In this definition we take the absolute value of the odd polynomial terms, as present for example
in the Laplace density, to ensure that the valence shock is symmetric. We assume that the constants

c1 through ¢, are positive to ensure that the density is quasi-concave.

Lemma 27. Under Assumption 1, if the weight on vote share m is small enough or if the valence
shock v is large enough, then Condition 1 holds. Formally, there exist m > 0, such that for all m
with 0 < m < m, Condition 1 holds. Given a valence shock v that satisfies our assumptions, there
exist K > 0, such that for all k > K, Condition 1 holds under valence shock kv.

Proof. We show the Hessian of the party objective U, (x4, zp, p) in z, is negative definite over &,
when zj, = oz} with a € [0, 1] and p = N(0,X,) with 3, < 3. This implies concavity and therefore
quasi-concavity. The proof for concavity of Up(z4, zp, p) in xp is analogous by symmetry.

Let V denote the gradient with respect to x,. The Hessian H, (x4, xp, p, m) of party a’s objective

with respect to , is

Ho(aas . pym) = V2Un(wa,20,9) =m0 [ T2, (Bu(6.20,20))dp(6) + VPu(rs )
—m / V (Vau(za, 0) o (Au(B, 2q, 7)) ) dp(6) — I,
= m/ (—Inf,,(Au(Q, Tar b)) + Vu(za, 0)Vu(za, ) f(Au(b, z,, xb))> dp(0) — I,
= [ (T A,z 2)) + 400 — )6 = 20) (6, 70,0) ) dp(6) ~ I,

where

Au(0, xq, xp) = u(z4,0) — u(xy, 0).

We were able to exchange integration and differentiation because the derivative and second deriva-
tive are bounded (componentwise) by a constant, which is integrable under the probability measure
p. We can bound both derivatives by constants because they consist of polynomial terms multi-
plied by an exponential function (with a decreasing polynomial exponent), so the integrands are
eventually radially decreasing by Assumption 1. Thus, the supremum of the integrand is obtained
on a compact sphere, on which the integrand obtains its finite maximum by continuity.

If m = 0, the Hessian H,(zq,zp, p,m) is —A, which is negative definite, so the objective is
concave. To show for m small enough, the objective is concave, we first prove that the Hessian
H,(xq,xp, p,m) is continuous in (x4, zp, p,m). For that we endow the domain of p, A(R™), with
the weak topology on A(R™).

First, we show continuity of the Hessian in (z4,s,p). Let the sequence (xf,x}, p", m)neN

converge to (x4, xp, p,m). We show that

lim (Ha(aza,azb,p, m) — Hy(xy, zy, p",m))

n—o0
:nli_>néo (Ha(l‘a,l‘b,p, m) — Hy(xq, xp, p”,m)) + nh_)rrolo (Ha(xa, xp, p",m) — Ha(xg,xg,p",m)) (46)
=040=0.
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The first term of (46) is the difference between the integral of
m (I fu( D0, 20, 30) + 400 = 22) (0 = 22) " (Au(6, 0,31))

with respect to p" and with respect to p as n — oco. The limit is zero componentwise because the
integrand is bounded (as we argued above), the integrand is continuous in 6, and p™ converges to
p in the weak topology.

The limit of the second term of (46) is zero because the integrand is Lipschitz continuous in
(x4, 1) with respect to the distance d, say induced by the L'-norm. Lipschitz continuity with
Lipschitz constant C implies that we can bound the term by

lim m | Cd((z],zp), (xe, xp))dp" = lim mCd((z},xy), (Ta,zs)) = 0.

n—o0 n—oo

Lipschitz continuity follows from the gradient of the integrand in (x4, ) being bounded compo-
nentwise, which follows analogously to how we showed above that the integrand is bounded.

If Hy(zq, zp, p,m) is continuous in (x4, zp, p), then it is jointly continuous in (x4, zp, p, m) as m
simply multiplies the integrand. Then, v" H, (24, xy, p,m)v is jointly continuous in those variables
and v.

Using continuity of the Hessian, we show for m small enough, the Hessian is negative definite
for x4,z € D and p € R. Recall that a matrix H € R™*" is negative definite if for all v € R,
v Hv < 0. Given m, choose the x4,z € D, ag with ag <1, and v € R™ with (v,v) = 1 to maximize
v Hy (24, 1y, p,m)v. By the above, v Hy(zq, 23, p,m)v is continuous in (azma:b,aﬁ,v,m) and the
choice set is compact. At m = 0, we have H,(z4,xp, p,m) = —1I,, so the value is —1 irrespective
of the choice of (x4, xp, p,v), so the maximum is also —1. By Berge’s maximum theorem, the value
function is continuous, so for some m the value function crosses zero for the last time and is negative
for m < m. This implies that for m < m, v Hy(q, zp, p, m)v < 0 for all v € R™, so the Hessian is
negative definite for all z,, 2, € D and p € R. This implies concavity of U, (x4, xp, p) in z, for all
Ta,xp € D and all p € R.

A similar argument shows that scaling up the valence shock v by a large enough factor & makes
the party objective concave. Valence shock kv has the density %f »(%). Reparametrizing by ¢ = 1/k,
we get the density cf, (cx) and the derivative of the density being ¢ f/(cx). At ¢ = 0, the Hessian is
thus —I,,, which is negative definite, for all x4, xp, p. To show for ¢ small enough (or, equivalently,
k large enough), the Hessian is negative definite, again, let a fictitious adversarial agent choose
Tq,xp € D, p € R, and v € R" with (v,v) = 1 to maximize v' Hy (4, 23, p)v. Again, by continuity
we can apply Berge’s maximum theorem to obtain that the Hessian is negative definite for all

Zq,7p € D and p € R for ¢ small enough.*’ O

49The arguments above use that for m small enough or v large enough, the party objective becomes dominated
by the ideological motive, which is concave, while the vote share motive becomes arbitrarily small. Additionally, one
could show for large enough valence shock v, the vote share alone becomes concave. This follows from the fact that
in the preceding paragraph, the density scales by ¢ while the derivative of the density scales by ¢?. Thus, the negative
definite density term in the integrand dominates the integrand for small enough c.
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