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Abstract

Agents often base decisions on noisy signals, attenuating Bayesian updating toward the prior

expectation – a well-established phenomenon in the normal-normal signal-extraction model. We

show this attenuation effect extends to all symmetric, log-concave distributions. By introducing

a notion of precision based on likelihood-ratio dominance, we prove that when both the prior and

noise are symmetric and log-concave, the posterior mean moves closer to the prior mean as the

signal becomes less precise. We discuss applications to cognitive imprecision, prior precision, and

overconfidence.
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1 Introduction

In many economic contexts, agents often do not respond optimally to fundamental variables: numer-

ical estimates are biased toward default values (Tversky and Kahneman, 1974), firms and households

adjust only partially to changes in macroeconomic conditions (Sims, 2003), and consumers underre-

act to non-salient taxes (Chetty et al., 2009). A recent body of literature suggests that these and

similar behavioral phenomena can be explained by cognitive imprecision (Gabaix, 2019; Woodford,

2020; Enke and Graeber, 2023; Enke et al., 2024): agents base their decisions on noisy internal

signals of the true variables of interest.

Models of cognitive imprecision account for such behavior by showing noise in cognition attenuates

the Bayesian updating process, thereby compressing behavior towards some default action. This

effect is typically formalized through the normal-normal model : the agent observes a noisy signal

S = X+ε, where the state X ∈ R is normally distributed, and ε is independent, normally distributed

noise. The agent’s posterior mean is then compressed toward the prior mean, more so when the

signal is less precise: the posterior mean lies between the signal and the prior mean and the posterior

mean is closer to the prior mean the larger the variance of ε.1 We refer to this effect as imprecision

attenuates updating. When the agent’s action is determined by their posterior mean, then attenuation

of updating translates to attenuation of behavior. One important piece of evidence for cognitive

imprecision relies on this effect: subjects who report higher cognitive uncertainty tend to exhibit

more attenuated behavioral responses (Enke and Graeber, 2023; Enke et al., 2024).

Despite the empirical relevance of this attenuation effect, it remained unknown how far it ex-

tends beyond normal distributions, which rely on strong parametric assumptions. Although normal

distributions are justified in certain contexts — such as through the central limit theorem or under

rational inattention with a normal prior and quadratic loss — these justifications are limited to

specific situations. Therefore, identifying a non-parametric class of signal structures under which

imprecision attenuates updating is desirable to provide a more robust theoretical foundation for

interpreting empirical observations as implications of cognitive imprecision.

To address this gap, we show imprecision attenuates updating holds for all additive noise models

with symmetric, log-concave distributions: when the state X and noise ε have (possibly different)

symmetric and log-concave densities, the posterior mean moves closer to the prior mean as the signal

becomes less precise, for any signal realization s (Theorem 1).

To formulate this result, we introduce an appropriate notion of precision, which we call the

precision order. It requires the noise distribution of a less precise signal to be further away from zero

in the sense of likelihood-ratio domination: S̃ = X+ ε̃ is less precise than S = X+ ε if the likelihood

ratio fε̃(x)/fε(x) is weakly increasing as x moves away from 0. More concretely, we show that if we

scale up a log-concave error, the resulting signal is less precise in our sense, and thus, our precision

1Formally, if X ∼ N (µ, σ2
X) and ε ∼ N (0, σ2

ε), then

E[X|S = s] =
σ2
X

σ2
X + σ2

ε

s+

(
1− σ2

X

σ2
X + σ2

ε

)
µ.

The larger σ2
ε , the closer the posterior mean is to the prior mean.
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order applies to log-concave location-scale experiments.

Symmetric, log-concave distributions include many common probability distributions beyond the

normal, such as logistic, extreme value, and double-exponential distributions. Our focus on this

class is motivated by Chambers and Healy (2012), who demonstrate symmetry and quasi-concavity

(unimodality) are necessary conditions for the posterior mean to robustly lie between the prior

mean and the signal realization. More precisely, they show that if the prior is not symmetric and

quasi-concave, one can find a symmetric and quasi-concave error (and vice versa) under which the

posterior mean does not lie between the prior mean and the signal realization. We show one need

only strengthen quasi-concavity to log-concavity to obtain our result.

Although our main result extends the attenuation effect to a broader class of distributions, some

caution is warranted. As Chambers and Healy (2012) demonstrate, without symmetry and quasi-

concavity, one can easily construct examples where the agent overreacts to signals; that is, the

posterior mean is more extreme than the signal. Moreover, we show adding additional independent

noise to a signal structure can lead the posterior mean to become more extreme if the prior is not

log-concave (Appendix 6.1).

Finally, we leverage Theorem 1 to establish implications for signal extraction problems, which

we believe are of broader economic relevance:

• Prior Precision: Our main theorem implies a converse comparative-statics result regarding

prior precision (Corollaries 2 and 3): increasing the precision of the prior brings the posterior

mean closer to the prior mean for any given signal realization.

• Average Posterior Means: We extend our analysis to average posterior means conditional on

the true state, which are relevant when agents acquire conditionally independent signals about

a common variable. We show that, conditional on the true state, the average posterior mean

lies between the state and the prior mean (Proposition 1).

• Comparative Statics for Average Posterior Mean: Greater (over)confidence in the signal brings

the average posterior mean closer to the true state (Proposition 2), whereas greater prior

precision brings it closer to the prior mean (Proposition 3).

Related Literature We show new theoretical results for signal structures with additive indepen-

dent noise, also called location experiments. Boll (1955) shows one location experiment is Blackwell-

dominated by another if and only if its error is obtained from the other’s error by adding another

independent error. Lehmann (1988) studies the value of information for location experiments with

log-concave errors in monotone decision problems. Kartik et al. (2021) show a comparative-statics

result on posterior means for agents with heterogeneous priors under monotone likelihood-ratio ex-

periments, of which location-experiments with log-concave errors are an example. Dawid (1973)

shows that, broadly speaking, when the error is more heavy-tailed than the prior, extreme observa-

tions get rejected in the sense that the posterior is close to the prior (for a review of the ensuing

literature, see O’Hagan and Pericchi, 2012).
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2 Model

We restrict attention to signal structures, where the signal equals the one-dimensional state plus

some independent noise, which are called location experiments. Formally, the random signal S is a

location experiment if it is the sum of the random state X and an random error ε that is independent

of X, which we write as ε ⊥⊥ X. We assume that the error has mean 0, that is, the signal is unbiased.

If not, one could easily derive an unbiased signal by subtracting the mean of ε from S.

Assumption 1 (Location Experiment).

S = X + ε (1)

ε ⊥⊥ X (2)

E[ε] = 0 (3)

Further, we make the technical assumption that the state X and error ε admit positive densities

fX and fε, and that these densities are absolutely Lebesgue-integrable, which guarantees finite means

and finite conditional expectation E[X|S = s]. We call fX the prior density and fε the error density.

Assumption 2. X and ε admit positive densities fX , fε ∈ L1(R).

Following Chambers and Healy (2012), we assume symmetric and quasi-concave prior and error

densities. They show that without these assumptions, the posterior mean does not necessarily lie

between the prior mean and the signal realization. We believe it is only interesting to speak of more

updating toward the signal, when there is updating toward the signal in the first place.

Assumption 3. The densities fX and fε are symmetric and quasi-concave.

In particular, that the prior density fX is symmetric around E[X] and the error density fε is

symmetric around 0 by (3).

Chambers and Healy (2012) show the following result, which we include for later reference.

Fact 1 (Chambers and Healy, 2012, Proposition 3). Under Assumptions 1 to 3, for any signal

realization s, the posterior mean E[X|S = s] lies weakly between the prior mean E[X] and the signal

s. Formally,

∀s ≤ E[X] : s ≤ E[X|S = s] ≤ E[X],

∀s ≥ E[X] : s ≥ E[X|S = s] ≥ E[X].

Throughout the paper, we maintain Assumptions 1 to 3. In particular, all considered prior and

error densities are assumed to be positive, symmetric, and quasi-concave, unless otherwise specified.

3 Precision Order

One challenge to formalizing the idea that imprecision attenuates updating is to find the right order

on signal structures. The well known Blackwell order is not appropriate for two reasons. First,
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Figure 1: Mean-zero normal distributions with scale parameters σ = 1 (bold) and σ = 1.5 (dashed).
The former distribution is more precise as the likelihood ratio falls moving away from 0.

we show in Appendix 6.1 that the Blackwell order predicts the imprecision attenuates updating

effect only under very special conditions. Second, the Blackwell order is very restrictive on location

experiments (Boll, 1955; Lehmann, 1988). In particular, the location experiment S = X + ε with

ε ∼ U [−1, 1] does not Blackwell dominate the location experiment S = X + ε′ with ε′ ∼ U [−k, k] if

k is not an integer, no matter how large k is.

Instead, we introduce a new order, which we call the precision order on the class of location

experiments that satisfy Assumptions 1 to 3. We first define this order for error variables (or, more

generally, for random variables) and then extend it to the associated location experiments. The next

section shows that this order delivers the desired result (Theorem 1).

Definition 1 (Precision Order). Let ε̃ and ε be random variables with positive, symmetric-around-0,

and quasi-concave densities fε̃ and fε, respectively. We say ε̃ is less precise than ε if the likelihood

ratio
fε̃(x)

fε(x)

is weakly increasing in x for x > 0. Further, we say the location experiment S̃ = X+ ε̃ is less precise

than location experiment S = X + ε if ε̃ is less precise than ε.

Note that by symmetric of the densities, the definition implies that the likelihood ratio fε̃(x)(x)/fε(x)

is weakly decreasing for x < 0. Thus, the precision order requires that, for positive values, ε̃

likelihood-ratio dominates ε and, for negative values, ε̃ is likelihood-ratio dominated by ε. In other

words, the less precise location experiment has an error further away from 0 in the sense of likelihood-

ratio domination.

Figure 1 shows an example of two normal distributions with different variances, ε ∼ N (0, 1) and

ε′ ∼ N (0, 1.52), which are ranked by the precision order. The more precise distribution has a higher

density at zero but the density falls faster moving away from zero. More generally, we show that

when we scale up any symmetric, log-concave density by a constant k > 1, then the resulting density

is less precise (see section 4.1). Thus, S = X + ε with ε ∼ U [−1, 1] is more precise than the location
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experiment S = X + ε′ with ε′ ∼ U [−k, k] for all k > 1, in contrast to the Blackwell order.2

The precision order is at the intersection of two important orders: the convex order, also known

as mean-preserving spread order, on the error distributions, and the Lehmann order on location

experiments. One can show that if the location experiment S = X+ε′ is less precise than S = X+ε,

then the error ε′ is a mean-preserving spread of the error ε.3 The Lehmann order characterizes

what experiments are more valuable in all monotone decision problems (Lehmann, 1988; Quah and

Strulovici, 2009). This order is defined for location experiments only when they have log-concave

errors, since these satisfy the monotone likelihood-ratio property required by the Lehmann order. One

can show for location experiments with log-concave errors, the precision order implies the Lehmann

order.4

4 Results

Our main result shows that imprecision attenuates updating if we rank location experiments by the

precision order, under the additional assumption of a log-concave prior.

Theorem 1 (Imprecision Attenuates Updating). Let the prior density be log-concave. Under a less

precise location experiment, the posterior mean is weakly closer to the prior mean, for any signal

realization. Formally, if S̃ = X + ε̃ is less precise than S = X + ε, then

∀s ≤ E[X] : E[X|S = s] ≤ E[X|S̃ = s] ≤ E[X],

∀s ≥ E[X] : E[X|S = s] ≥ E[X|S̃ = s] ≥ E[X].

The proof can be found in the Appendix, the idea of which is roughly as follows. Suppose without

loss that the signal realization s is larger than the prior mean. One can show that to the right of s,

the more precise signal leads to a likelihood-ratio dominated posterior, which decreases the posterior

mean, and to the left of the s, the more precise signal leads to a likelihood-ratio dominant posterior,

which increases the posterior mean. The crucial part of the proof is to show that the former effect

dominates. The proof does this through a sequence of inequalities and bounds, using only elementary

properties of Bayesian updating and quasi-concave as well as log-concave functions.

For this as well as the following results, an analogous strict version of the result holds. We can

instead require that the error is replaced by a strictly less precise error in the sense that the likelihood

2To be precise, the precision order requires the densities to be positive everywhere. However, we can approximate
uniform densities through positive densities.

3If S′ is less precise than S, then the CDFs of ε′ and ε cross once. Together with ε′ and ε having equal means, this
implies that one distribution majorizes the other, see also Diamond and Stiglitz (1974).

4On such location experiments, the Lehmann order coincides with the dispersive order on the error distributions,
which requires that any two quantiles are weakly further apart under the more dispersed error distribution. Formally,
let ε and ε′ have CDFs F and G, respectively, and let F−1 and G−1 denote here the right-continuous inverses. ε is
smaller in the dispersive order than ε′ if ∀ 0 < α ≤ β < 1 : F−1(β)− F−1(α) ≤ G−1(β)−G−1(α). When we truncate
the errors to positive values, the precision order implies the likelihood-ratio order. As is known, the likelihood-ratio
order implies the hazard rate order (e.g. Shaked and Shanthikumar, 2007, Theorem 1.C.1). The hazard rate order
together with densities being log-concave implies the dispersive order (Bagai and Kochar, 1986, Theorem 1). It can be
easily seen that if the dispersive order holds for all 1/2 ≤ α ≤ β < 1, then it holds for all 0 < α ≤ β < 1.
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ratio in Definition 1 is strictly decreasing. Then, for signal realizations distinct from the prior mean,

the posterior mean is strictly closer to s.

To illustrate an immediate implication of the result, suppose two agents observe the same signal

but they differ in their assessment of the signal structure. One agent is overconfident in the signal

source and updates as if the error was more precise. Then, that agent’s posterior mean will be

closer to the signal, for any signal realization. In section 4.3, we elaborate on the overconfidence

application.

Next, we show that our precision order arises endogenously in location-scale experiments with

log-concave, and certain non-log-concave, error densities.

4.1 Location-Scale Experiments

We introduce to our location experiment a scale parameter σ ∈ R≥0 that scales the error term, such

that

Sσ = X + σε. (4)

We show comparative statics on the scale parameter σ.

Lemma 1. If ε is symmetric around 0 and log fε(e
x) is concave, then ∀σ′ > σ > 0, σ′ε is less precise

than σε. In particular, log fε(e
x) is concave if the density fε(x) is log-concave.5

In the Appendix, we show that Lemma 1 follows from a known result. Many commonly used

distributions are symmetric and log-concave, such as the normal, logistic, extreme value, and double-

exponential distributions. Further, we give examples of symmetric and non-log-concave distributions

for which log fε(e
x) is nevertheless concave, such as the Student-t, Cauchy, and the “double” Pareto

distribution.

Together, Theorem 1 and Lemma 1 imply the following important result. By Lemma 1, the result

still holds if we weaken the assumption that the error density fε is log-concave to log fε(e
x) being

concave.

Corollary 1. Let the prior and error densities be log-concave. The posterior mean is weakly closer to

the prior mean under a larger scale parameter, for any signal realization s. Formally, if σ̃ > σ > 0,

then

∀s ≤ E[X] : E[X|Sσ = s] ≤ E[X|Sσ̃ = s] ≤ E[X],

∀s ≥ E[X] : E[X|Sσ = s] ≥ E[X|Sσ̃ = s] ≥ E[X].

Location-scale experiments with log-concave error density further satisfy the monotone likelihood-

ratio property, which implies that the posterior mean is non-decreasing in the signal, as in the normal-

normal model. This suggests that location-scale experiments with symmetric and log-concave prior

5This can be seen easily if the log-density is differentiable. Define ϕ = log f and ψ = exp. Then, ϕ is concave and
decreasing for positive values and ψ is convex, increasing, and obtains positive values only, which implies (ϕ ◦ψ)′′(x) =
ψ′′(x)(ϕ′ ◦ ψ)(x) + (ψ′(x))2(ϕ′′ ◦ ψ)(x) ≤ 0.
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and error density are a useful class of models that maintains key properties of the normal-normal

model.

The next section shows comparative statics result for changing the prior instead of the error,

exploiting a symmetry in location experiments.

4.2 Comparative Statics on the Prior

For location experiments, the posterior density is symmetric in the prior and in the error density.

This follows from the more general property of Bayesian updating that the posterior is proportional

to the product of the prior and the likelihood, p(x|s) ∝ p(x, s) = p(x)p(s|x). In the case of loca-

tion experiments, this implies the density of the posterior conditional on S = s is proportional to

fX(x)fε(s−x). Using this insight, Theorem 1 immediately implies a dual result for making the prior

more precise.

Corollary 2. Let the error density be log-concave. The posterior mean is weakly closer to the prior

mean under a more precise prior, for any signal realization s. Formally, if E[X] = E[X̃] and X̃ is

more precise than X, then

∀s ≤ E[X] : E[X|X + ε = s] ≤ E[X̃|X̃ + ε = s] ≤ E[X],

∀s ≥ E[X] : E[X|X + ε = s] ≥ E[X̃|X̃ + ε = s] ≥ E[X].

To illustrate Corollary 2, suppose that two agents observe the same signal about the state but

one agent has a more precise prior (but with the same mean). Corollary 2 implies that the agent

with the more precise prior has a posterior mean that is closer to the prior mean, for any signal

realization.

By the same argument, an analogous dual result to Corollary 1 holds for scaling the prior instead

of the error density. If X has density fX(x), then kX has density 1/kfX(x/k).

Corollary 3. Let the error and prior density be log-concave. For any signal realization s, the

posterior mean is weakly closer to the prior mean if we scale down the prior. Formally, if 0 < k̃ < k

and we normalize the prior mean to zero, E[X] = 0, then

∀s ≤ E[X] : E[kX|kX + ε = s] ≤ E[k̃X|k̃X + ε = s] ≤ E[X],

∀s ≥ E[X] : E[kX|kX + ε = s] ≥ E[k̃X|k̃X + ε = s] ≥ E[X].

4.3 Average Posterior Means

Our previous comparative statics results hold for any signal realization and thus speaks to situations

where agents observe the same signal. However, in many situations, agents observe distinct signals

from the same signal structure, that is their signal realization are independent conditional on the

state. Further, often we do not observe agent’s signal realizations but only the average posterior

mean, such as when we observe only aggregate behavior from a population of individuals. What can
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Figure 2: Illustrating the proof of Proposition 1.

be said about comparative statics with respect to the average posterior means given some true state

X?

Before we prove comparative statics results, we show that the average posterior mean necessarily

lies between the state X and the prior mean E[X], extending Fact 1.

Proposition 1. For any state x, the conditional average posterior mean E[E[X|S]|X = x] lies weakly

between the state x and the prior mean E[X]. Formally,

∀x ≤ E[X] : x ≤ E[E[X|S]|X = x] ≤ E[X],

∀x ≥ E[X] : x ≥ E[E[X|S]|X = x] ≥ E[X].

The proof is illustrated using Figure 2. Let X > E[X] = 0. Conditional on state X, the

distribution of the signal S is is symmetric around X so its expectation equals X. Taking the

conditional expectation E[X|S] moves the distribution closer to E[X] as indicated by the arrows.

Given our assumptions, the conditional expectation is antisymmetric and s > 0 has a higher likelihood

than −s < 0. Thus, the overall effect on the average posterior mean is negative and E[E[X|S]|X] <

E[S|X] = X. Further, because the density of s is larger than the density of −s, integrating over all

s leads to a positive expectation, so E[X] < E[E[X|S]|X].

Overconfidence First, we prove a comparative statics result for overconfidence in the signal.

We consider two agents, A and B, that face the same objective signal structure S = X + ε but

update differently because they have different confidence in the signal. That is, agent i ∈ {A,B}
forms their conditional expectation Ei[X|S = s] as if S = X + εi, Ei[X|S = s] := E[X|X + εi = s].

Especially empirically relevant is the case overconfidence in the signal, also called overprecision, which

is pervasive (Moore and Healy, 2008). We define a relative notion of overconfidence by generalizing

the definition in Ortoleva and Snowberg (2015), which is based on the normal-normal model, using

our Definition 1.

Definition 2. A is more confident than B in the signal if εA is more precise than εB.
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Figure 3: Illustrating the proof of Proposition 2

Using this definition, we prove the following comparative statics result.

Proposition 2. Let the prior density be log-concave and A be more confident than B. Conditional on

any state x, the average posterior mean of A is weakly closer to the state than the average posterior

mean of B. Formally,

∀x ≤ E[X] : x ≤ E[EA[X|S]|X = x] ≤ E[EB[X|S]|X = x],

∀x ≥ E[X] : x ≥ E[EA[X|S]|X = x] ≥ E[EB[X|S]|X = x].

This shows that more overconfident agents have, on average, posterior means closer to the state

X and further away from their prior mean E[X].

The proof builds on the proof of Proposition 1 and is illustrated using Figure 3. Because A is

more overconfident in the signal, their posterior mean is closer to the signal for any signal realization

s as well as −s. For positive X, because s > 0 is more likely than −s, the overall effect on the

average posterior mean is positive. Then, the result follows from Proposition 1.

Prior Precision Second, we show comparative statics with respect to the prior precision. Given

some state X, consider two agents, A and B, with symmetric and quasi-concave priors that have the

same mean, where agent A’s prior is more precise than B’s. Then, we have from the argument in

Proposition 2 and the Corollary 2, we immediately obtain the following result.

Proposition 3. Let the error density be log-concave and A’s prior be less precise than B’s. Condi-

tional on any state x, the average posterior mean of A is weakly closer to the state than the average

posterior mean of B. Formally,

∀x ≤ E[X] : x ≤ E[EA[X|S]|X = x] ≤ E[EB[X|S]|X = x],

∀x ≥ E[X] : x ≥ E[EA[X|S]|X = x] ≥ E[EB[X|S]|X = x].
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5 Conclusion

In this paper, we have extended the attenuation effect of cognitive imprecision beyond the normal-

normal model to encompass all symmetric, log-concave distributions. By introducing a new or-

der of precision, based on likelihood-ratio dominance, we demonstrated that imprecision attenuates

Bayesian updating toward prior beliefs across a broad class of distributions commonly used in eco-

nomic modeling. This generalization provides a more robust theoretical foundation for interpreting

empirical observations of attenuated behavior as resulting from cognitive imprecision.

Our findings also have broader implications for signal extraction problems. We established com-

parative statics results regarding prior precision, showing that increased prior precision brings the

posterior mean closer to the prior mean for any given signal realization. Additionally, we analyzed

average posterior means, demonstrating how overconfidence and prior precision affect the average

posterior mean. Perhaps surprisingly, our results show that the posterior means of overconfident

agents are on average closer to the truth while those of agents with more precise priors are further

away from it.
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6 Appendix

6.1 Blackwell-Order

Boll (1955) shows that location experiment S = X + ε Blackwell dominates another location experi-

ment S̃ = X+ ε̃ if and only if the error ε̃ is obtained from the error ε by adding another independent

error, that is, ε̃ = ε+ ε′ with ε′ ⊥⊥ ε.

We show imprecision attenuates updating if location experiment S = X + ε Blackwell dominates

S̃ = X + ε̃ under two additional assumptions. First, the posterior mean E[X|S = s] of the Blackwell

dominant location experiment is linear in s. This holds if X and ε are normally distributed. Second,

we require that additionally to Assumption 3 that also the added error ε′ has a positive, symmetric-

around-0, and quasi-concave density.

Proposition 4. Let location experiment S = X+ε Blackwell dominate S̃ = X+ ε̃, that is, ε̃ = ε+ε′

and (X, ε, ε′) are jointly independent. Further, let the posterior mean E[X|S = s] be linear in s

and ε′ have a positive, symmetric-around-0, and quasi-concave density. Then, the posterior mean

E[X|S̃ = s] is weakly closer to the prior mean than E[X|S = s]. Formally,

∀s ≤ E[X] : E[X|S = s] ≤ E[X|S̃ = s] ≤ E[X],

∀s ≥ E[X] : E[X|S = s] ≥ E[X|S̃ = s] ≥ E[X].
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Proof. By the law of iterated expectations and because S̃ is uninformative conditional on S, we have

E[X|S̃ = s] = E[E[X|S, S̃ = s]|S̃ = s] = E[E[X|S]|S̃ = s].

Define e(s) := E[X|S = s]. By assumption, e(s) is linear and hence commutes with the expectation

operator,

E[E[X|S]|S̃ = s] = E[e(S)|S̃ = s] = e(E[S|S̃ = s]).

The two equations together deliver

E[X|S̃ = s] = e(E[S|S̃ = s]).

The random variable S̃ = S + ε′ viewed as a signal of S satisfies the assumptions in Fact 1. The

random variable ε′ has a symmetric and quasi-concave density by assumption. The random variable

S = X+ε is symmetric because X and ε are symmetric. And S has a quasi-concave density because

X and ε have symmetric and quasi-concave densities (Wintner, 1938).

Thus, by Fact 1, E[S|S̃ = s] lies weakly between s and E[S] = E[X]. By e being linear (and it must

be linearly increasing), this implies that E[X|S̃ = s] = e(E[S|S̃ = s]) lies between e(E[X]) = E[X]

and e(s) = E[X|S = s].

The proof of Proposition 4 is instructive to construct counterexamples to imprecision attenuates

updating under the Blackwell order. These counterexamples occur easily once we deviate from the

restrictive assumptions of Proposition 4.

Counterexample with asymmetric ε′: Even under normal X and ε, which imply that

E[X|S = s] is linear in s, we need ε′ to be symmetric and quasi-concave to apply Fact 1. With

skewed distributions for ε′, one can construct counterexamples to the conclusion of Proposition 4.

In particular, once can easily construct a binary, mean-zero ε̃ such that E[S|S̃ = s] lies outside

the interval from E[X] to s. Let ε̃ take on value 1 with probability p and value −p/(1 − p) with

probability 1 − p. Suppose, X ∼ N (0, σ2
X) and ε ∼ N (0, σ2

ε), so S = X + ε ∼ N (0, σ2
X + σ2

ε). Let

s > 0. As we let p go to 1, the conditional expectation of S conditional on S̃ converges to the

degenerate distribution on s+ 1 and since the normal distribution falls exponentially towards zero,

the conditional expectation E[S|S̃ = s] converges to s+ 1, which lies outside the interval from E[X]

to s. While this argument relies on binary ε̃, one can perform a similar construction using other

left-skewed distributions for ε̃.

Counterexample with heavy-tailed prior: We can find counterexamples with symmetric ε̃,

if we drop the assumption that ε is normal. To construct an example where the Blackwell dominated

location experiment S̃ = S + ε+ ε′ leads to less attenuation, we note the importance of the function

e(s) = E[X|S = s] in our proof of Proposition 4. In particular, if e(s) is convex, then by Jensen’s

inequality, E[e(S)|S̃ = s] > e(E[S|S̃ = s]). Further, if e(s) is decreasing, then e(E[S|S̃ = s]) > e(s)

even if E[S|S̃ = s] < s. Thus, if e(s) is decreasing and convex over the support of S|S̃ = s, then

13
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Figure 4: Conditional expectation E[X|S = s] for normal priorX ∼ N (0, 1) and student t-distributed
(with 3 degrees of freedom) error ε ∼ t3.

E[X|S̃ = s] = E[e(S)|S̃ = s] > e(s) = E[X|S = s] and attenuation fails.

How do we generate a (locally) decreasing and convex e(s)? This occurs naturally when the error

has a heavier tail than the prior, as studied in the literature on Bayesian outlier rejection (O’Hagan

and Pericchi, 2012). If the error has a heavier tail than the prior, for large enough signals, the

posterior mean decreases until it coincides with the prior mean. This is because large signals are

treated as outliers and are attributed purely to the error. For example, when the prior is normally

distributed and the error is standard student-t distributed with 3 degrees of freedom (this distribution

has finite first and second moments), then the posterior mean takes the form as depicted in Figure

4, which is decreasing and convex in s above a threshold. If we add a symmetric and quasiconcave

error with bounded support, we can generate a counterexample to attenuation.

6.2 Proof of Theorem 1

Proof. Without loss of generality, the signal realization is zero, s = 0. If E[X] = 0, then the posterior

mean is zero by Fact 1 and we are done. Assume E[X] < 0 (the case E[X] > 0 is analogous). We

prove that for strictly more precise error, the posterior mean becomes strictly closer to 0.

Let ε denote the error and ε̃ denote the more precise error and fε and fε̃ their respective densities.

Let f denote the posterior density under error ε after observing signal s = 0 and g analogously under

error ε̃.

The posterior mean is

E[X|X + ε̃ = 0] =

∫ 0

−∞
xg(x)dx+

∫ ∞

0
xg(x)dx =

∫ ∞

0
−x(g(−x)− g(x))dx,

and analogously with density f instead of g for the signal with greater noise. The proof revolves

around showing that the following integral is positive:

E[X|X + ε̃ = 0]− E[X|X + ε = 0] =

∫ ∞

0
−x

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx (5)
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First, we prove the following result regarding the integrand of (5), which uses that fε̃(x)
fε(x)

is strictly

decreasing for x > 0.

Lemma 2. There is some c > 0 such that the integrand of (5) is strictly negative for x ∈ [0, c) and

strictly positive for x ∈ (−c,∞).

Proof. Again, the density f(x) is proportional to fX(x)fε(x) and g(x) to fX(x)fε̃(x). Thus, there is

some factor C > 0 such that

g(−x)− g(x) = C
fε̃(−x)

fε(−x)
f(−x) + C

fε̃(x)

fε(x)
f(x) = C

fε̃(x)

fε(x)
(f(−x)− f(x)),

where we have used the symmetry of the error densities. Thus, the integrand of (5) is negative if,

and only if, C fε̃(x)
fε(x)

> 1.

The ratio fε̃(x)
fε(x)

is strictly decreasing for x > 0 by assumption. As both are densities that integrate

to 1, the ratio must cross 1/C and by strictly decreasing ratio, the crossing point must be unique up

to sign. Let c be the unique positive x at which g(x)
f(x) = 1/C. Then, for x ∈ [0, c) we have C fε̃(x)

fε(x)
> 1

and for x ∈ (c,∞) we have C fε̃(x)
fε(x)

< 1.

Without loss, we can rescale the space, so that c = 1. Using Lemma 2, we have that∫ ∞

0
−x

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx

>∫ 1

0
−1 ·

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx+

∫ ∞

1
−1 ·

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx

=

(−G2 +G3 −G1 +G4)− (−F2 + F3 − F1 + F4) (6)

where F1 through F4 are the probabilities of according to f on four mutually exclusive and exhaustive

intervals

F1 :=

∫ ∞

1
f(−x)dx =

∫ −1

−∞
f(x)dx

F2 :=

∫ 1

0
f(−x)dx =

∫ 0

−1
f(x)dx

F3 :=

∫ 1

0
f(x)dx

F4 :=

∫ ∞

1
f(x)dx

so F1, F2, F3, F4 > 0 and F1 + F2 + F3 + F4 = 1. G1 through G4 are defined analogously. We thus

need to show that

−G2 +G3 −G1 +G4 > −F2 + F3 − F1 + F4. (7)
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Figure 5: The posteriors f (bold) and g (dashed) after observing X + ε = 0 and X + ε̃ = 0,
respectively.

The proof proceeds as follows. As the Figure 5 depicts, G2 and G3 are larger than F2 and F3,

respectively, and G1 and G4 are smaller than F1 and F4, respectively. We show in Lemma 6 that (7)

would hold if G2 and G3 were larger than F2 and F3, each, by the same factor and similarly for G1

and G4. Lemma 3 to 5 argue that in fact these ratios are not the same and thus −G2+G3−G1+G4

is even larger, proving (7).

Before that, we prove the following lemma, which uses the log-concavity and symmetry of the

prior density as well as the symmetry of the error density.

Lemma 3. The posterior probability-ratio f(−x)
f(x) is strictly increasing in x.

Proof. By Bayes’ law, f is proportional to the product fX(x)fε(s − x) = fX(x)fε(x). The ratio is

strictly increasing if its logarithm, which is as follows, is strictly increasing in x. Using the symmetry

of fε and fX we obtain

log

(
f(−x)

f(x)

)
= log

(
fX(−x)fε(−x)

fX(x)fε(x)

)
= log

(
fX(−x)

fX(x)

)
= log fX(−x)− log fX(x) = log fX(x+ 2E[X])− log fX(x),

where we have used that fX(x) is symmetric around E[X] < 0, so

log fX(−x) = log fX
(
E[X] + (−x− E[X])

)
= log fX

(
E[X]− (−x− E[X])

)
= log fX(x+ 2E[X]).

By strict concavity of log fX and E[X] < 0, the difference log fX(x + 2E[X]) − log fX(x) is strictly

increasing.

Using Lemma 3, we prove two lemmas regarding ratios of the terms in (6).

Lemma 4. F1
F4

≥ F2
F3
.
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Proof. We have that

F1

F4
=

∫∞
1 f(−x)dx∫∞
1 f(x)dx

=

∫∞
1

f(−x)
f(x) f(x)dx∫∞

1 f(x)dx
≥

∫ 1
0

f(−x)
f(x) f(x)dx∫ 1
0 f(x)dx

=

∫ 1
0 f(−x)dx∫ 1
0 f(x)dx

=
F2

F3
.

The inequality holds because by Lemma 3. The two inner terms are the expectation of f(−x)
f(x) with

respect to the posterior distribution f conditional on the domain [1,∞) and [0, 1], respectively. The

former distribution first-order stochastically dominates the latter, thus the inequality follows from
f(−x)
f(x) being strictly increasing in x for x > 0.

The following lemma uses that fε̃(x)
fε(x)

is decreasing for x > 0.

Lemma 5. 1 < G2
F2

< G3
F3

and G1
F1

< G4
F4

< 1.

Proof. Using g(x) = fε̃(x)
fε(x)

f(x)C, where C is the ratio of the integration constants, and fε̃(−x)
fε(−x) =

fε̃(x)
fε(x)

(by symmetry), we have

G2

F2
=

∫ 1
0

g(−x)
f(−x)f(−x)Cdx∫ 1
0 f(−x)dx

=

∫ 1
0

fε̃(x)
fε(x)

Cf(−x)dx∫ 1
0 f(−x)dx

G3

F3
=

∫ 1
0

g(x)
f(x)f(x)dx∫ 1
0 f(x)dx

=

∫ 1
0

fε̃(x)
fε(x)

Cf(x)dx∫ 1
0 f(x)dx

.

Thus, both ratios are expectations of the function fε̃(x)
fε(x)

over the interval [0, 1] multiplied by C but

with densities f(−x)/(
∫ 1
0 f(−x)dx) and f(x)/(

∫ 1
0 f(x)dx), respectively. Because f(−x)

f(x) is increasing

in x > 0 by Lemma 3, the former density likelihood-ratio dominates the latter. This implies first-

order stochastic dominance, which in turn implies a strictly smaller expectation since fε̃(x)
fε(x)

is a

strictly decreasing function by assumption. Thus, G2
F2

< G3
F3

.

Moreover, by Lemma 2 and having normalized c = 1, fε̃(x)
fε(x)

C > 1 in the interval [0, 1). Hence, G2
F2

and G3
F3

, which are expectations of this ratio, are strictly greater than 1.

The proof of G1
F1

< G4
F4

< 1 is analogous, but with expectation over the domain [1,∞).

Define G̃2 = kF2 and G̃3 = kF3 with k > 1, and G̃1 = lF1 and G̃4 = lF4 with l < 1, such that

G̃2 + G̃3 = G2 + G3 and G̃1 + G̃4 = G1 + G4. By Lemma 5, G3
F3

> G̃3
F3

= G2+G3
F2+F3

= G̃2
F2

> G2
F2

, so

Q3 > Q̃3 and Q̃2 > Q2, implying −G2 +G3 > −G̃2 + G̃3. Analogously, −G1 +G4 > −G̃1 + G̃4.

−G2 +G3 −G1 +G4 > −G̃2 + G̃3 − G̃1 + G̃4. (8)

Finally, the following lemma concludes the proof.

Lemma 6. −G̃2 + G̃3 − G̃1 + G̃4 > −F2 + F3 − F1 + F4.

Proof. Define r := F2
F3

> 0 and R := F1
F4

> 0 where R > r by Lemma 4, and P := F2 + F3 and

p := F1 + F4.
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We have G̃1 + G̃2 + G̃3 + G̃4 = G1 +G2 +G3 +G4 = F1 +F2 +F3 +F4 = 1. Thus, we can define

∆ := (G̃2+G̃3)−(F2+F3) = (F1−F4)−(G̃1+G̃4) with ∆ > 0 as well as kP = P+∆ and lp = p−∆.

From P = F2+F3 and r = F2/F3, it follows that −F2+F3 = P ( 1
1+r−

r
1+r ) = −P r−1

r+1 and analogously

−F1+F4 = −pR−1
R+1 . So, (−G̃2+ G̃3)− (−F2+F3) = −∆ r−1

r+1 and (−G̃1+ G̃4)− (−F1+F4) = ∆R−1
R+1 .

Note that d
dx

x−1
x+1 = 2

(x+1)2
> 0 for x > 0. Then, by R > r, R−1

R+1 > r−1
r+1 , so −G̃2 + G̃3 − G̃1 + G̃4 >

−F2 + F3 − F1 + F4.

By (8) and Lemma 6, we obtain −G2 +G3 −G1 +G4 > −F2 + F3 − F1 + F4.

6.3 Proof of Lemma 1

Proof. By our definition, the symmetric around 0 random variable ε̃ is more precise than the sym-

metric around 0 random variable ε if [ε|ε > 0] is smaller in the likelihood ratio order than [ε̃|ε̃ > 0].

It is not hard to show that for a non-negative continuous random variables X, aX is smaller in the

likelihood ratio order than X for all 0 < a < 1 if, and only if, log fε(e
x) is concave for x > 0 (e.g.

Hu et al., 2004). Applying this result to X = [ε|ε > 0] yields the result.

The function log fε(e
x) is concave for x > 0 in particular if fε is log-concave and symmetric

around 0. Note that

d2

dx2
log fε(e

x) =
d

dx
ex(log fε)

′(ex) = ex(log fε)
′(ex) + e2x(log fε)

′′(ex).

The latter term is negative because fε is log-concave and the former term is negative because fε is

also symmetric around 0.

The main text gives several examples of commonly encountered symmetric, log-concave distri-

butions. Below, we prove for symmetric distributions that are not log-concave that log fε(e
x) is

nevertheless concave.

Non-log-concave examples The Student-t distribution with parameter ν > 0, which includes as

a special case the Cauchy distribution, gives

f(x) ∝
(
1 +

x2

ν

)−(ν+1)/2

⇒ log f(ex) = C − ν + 1

2
log(1 +

1

v
e2x)

⇒ d2

dx2
log f(ex) =

d

dx
− ν + 1

2

2
ν e

2x

1 + 1
ν e

2x
= −ν + 1

2

4
ν e

2x

(1 + 1
ν e

2x)2
< 0,

and hence has log-concave f(ex).

Creating a symmetric distribution from the Pareto distribution, analogous to the double-exponential

distribution, with α > 0 gives

f(x) ∝ x−α−1 ⇒ log f(ex) = C − (α+ 1)x,
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with log-linear and hence log-concave f(ex).

6.4 Proof of Proposition 1

Proof. By symmetry and translation invariance of location experiments, it is without loss to suppose

that X ≥ E[X] = 0.

First, we show the inequality E[X] = 0 ≤ E[E[X|S]|X]. We have

E[E[X|S]|X] =

∫ ∞

−∞
E[X|S = s]fε(s−X)ds

=

∫ ∞

0

(
E[X|S = s]fε(s−X) + E[X|S = −s]fε(−s−X)

)
ds. (9)

By symmetry of the prior and error densities, E[X|S = s] = −E[X|S = −s] and by Fact 1, E[X|S =

s] > 0. By symmetry around 0 and quasi-concavity of the error density, fε(−s−X) = fε(s+X) <

fε(s−X) and hence, the integrand of (9) is positive for every s ∈ [0,∞).

Second, we show E[E[X|S]|X] ≤ X. We have by symmetry of fε around 0,

X =

∫ ∞

−∞
sfε(s−X)ds

=

∫ ∞

0

(
sfε(s−X) + (−s)fε(−s−X)

)
ds. (10)

We need to show that (9) is less or equal to (10). By Fact 1, s ≥ E[X|S = s] but −s ≤ E[X|S = −s],

preventing a direct conclusion of the result. However, by symmetry, s − E[X|S = s] = E[X|S =

−s]− (−s) and as before fε(s−X) > fε(−s−X). Thus, for every s ∈ [0,∞), the integrand of (9)

is less or equal to the integrand of (10).

6.5 Proof of Proposition 3

We prove Proposition 3. Proposition 2 follows by analogous arguments.

Proof. For the first statement, we can again exploit the symmetry of the conditional expectations

EA[X|S] and EB[X|S] and that the density of S is larger for x > 0 than for x < 0.

Suppose, without loss, that X > E[X] = 0. By Proposition 1, we have E[X] ≤ E[EA[X|S]|X]

and E[X] ≤ E[EB[X|S]|X]. It remains to show that E[EA[X|S]|X] ≤ E[EB[X|S]|X].

E[EA[X|S]|X] =

∫ ∞

−∞
EA[X|S = s]fε(s−X)ds =

∫ ∞

0

(
EA[X|S = s]fε(s−X)− EA[X|S = −s]fε(s−X)

)
ds

E[EB[X|S]|X] =

∫ ∞

−∞
EB[X|S = s]fε(s−X)ds =

∫ ∞

0

(
EB[X|S = s]fε(s−X)− EB[X|S = −s]fε(s−X)

)
ds

By Theorem 1, we have EA[X|S = s] ≤ EB[X|S = s] and EA[X|S = −s] ≥ EB[X|S = −s] for s > 0,

preventing a direct conclusion of the result. However, by symmetry of the prior and the error density,

we know that EB[X|S = s]− EB[X|S = s] = EA[X|S = −s]− EB[X|S = −s] and by symmetry and
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quasi-concavity of the error density and X > 0, we have that fε(s−X) > fε(s+X) = fε(−s−X)

for s > 0. Thus, the integrand of the first equation is smaller than the integrand of the second for

any s > 0.

For the second statement, conditional on X, the distribution of S is the same for A and B. For

any realization S, EA[X|S] is closer to E[X] than EB[X|S]. So, the conditional distribution of the

absolute distance of EA[X|S] to E[X] is smaller in first-order stochastic dominance than the one of

EB[X|S].
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