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Abstract

This paper studies how imprecision in noisy signals attenuates Bayesian updating toward the prior.

This phenomenon is well-known under a normal prior and normal noise, where less precise signals

yield posterior means closer to the prior mean. We show this effect extends to any symmetric, log-

concave prior and any symmetric, quasi-concave location experiment, using a newly introduced

precision order. Our main result is that for any such prior and any signal realization, the posterior

mean under location experiment S is closer to the prior mean than is the posterior mean under

S′, if and only if S is less precise than S′. We discuss applications to cognitive imprecision, prior

precision, and overconfidence.
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1 Introduction

In many economic contexts, agents fail to respond optimally to fundamental variables: firms and

households adjust only partially to macroeconomic changes (Sims, 2003), consumers underreact to

non-salient taxes (Chetty, Looney, and Kroft, 2009), and numerical estimates are biased toward

default values (Tversky and Kahneman, 1974).1

Such attenuated behavior is often explained through imprecise information. In one version of

this explanation, agents base their choices on noisy signals of the fundamentals, where noise arises

from observational errors. In a second version, agents observe the fundamentals but the cognitive

process that translates fundamentals to actions is noisy, reflecting cognitive constraints. The latter

explanation has gained attention in the growing literature on cognitive imprecision (Gabaix, 2019;

Woodford, 2020; Enke and Graeber, 2023; Enke, Graeber, Oprea, and Yang, 2024), which shows how

noisy information processing can account for a wide range of economic phenomena.

These explanations share a core mechanism: noise attenuates Bayesian updating, which com-

presses behavior toward a default action. This mechanism is usually formalized using the normal-

normal model, where the agent observes a noisy signal S = X+ ε. Here, the state X ∈ R is normally

distributed, and ε ∈ R is independent, normal noise. The agent’s posterior mean is then compressed

toward the prior mean, and more so when the signal is less precise: the posterior mean lies between

the signal and the prior mean, and the posterior mean is closer to the prior mean the larger the

variance of ε.2 We refer to this effect as imprecision attenuates updating. If behavior is based on the

posterior mean, then such attenuation of updating leads to attenuation of behavior. In fact, a key

piece of evidence for cognitive imprecision relies on this effect: subjects reporting higher cognitive

uncertainty exhibit more attenuated behavioral responses (Enke and Graeber, 2023; Enke, Graeber,

Oprea, and Yang, 2024).

Despite its empirical relevance, it remained unknown whether the attenuation effect extends

beyond the normal distributions, which rely on strong parametric assumptions. While normality can

be justified in specific contexts—e.g., via the central limit theorem or rational inattention with a

normal prior and quadratic loss—these cases are limited. A non-parametric class of signal structures

that preserves the attenuation effect would offer a more robust foundation for interpreting empirical

evidence as a consequence of imprecise information.

To address this gap, we prove the imprecision-attenuates-updating effect holds in all additive-noise

models (location experiments) with symmetric, quasi-concave (unimodal) noise under a symmetric,

log-concave prior: for any signal realization, the posterior mean moves toward the prior mean as the

signal becomes less precise (Theorem 1).

To formalize this result, we introduce a notion of precision, which we call the precision order.

1Outside economics, psychophysics documents a central-tendency effect: perceptual judgments are biased toward
the mean of the stimulus distribution (Hollingworth, 1910; Stevens and Greenbaum, 1966).

2Formally, if X ∼ N (µ, σ2
X) and ε ∼ N (0, σ2

ε), then

E[X|S = s] =
σ2
X

σ2
X + σ2

ε

s+

(
1− σ2

X

σ2
X + σ2

ε

)
µ.

For any signal realization s, the larger σ2
ε , the closer the posterior mean is to the prior mean.

1



This order requires the noise distribution of a less precise signal to be farther from zero in the sense

of likelihood-ratio domination: S̃ = X + ε̃ is less precise than S = X + ε if the likelihood ratio

fε̃(x)/fε(x) increases as x moves away from 0 (see Figure 1). Concretely, we show that scaling up a

log-concave noise term produces a less precise signal under this definition. As a result, the precision

order applies to log-concave location-scale experiments.3

We show that the precision order is not only sufficient but also necessary for the imprecision-

attenuates-updating effect. The precision order is thus characterized by this effect. Specifically, if a

signal structure S is not more precise than another signal structure S′, then there exists a symmetric,

log-concave prior and a signal realization where S induces more attenuation than S′. This holds even

if S dominates S′ in the Blackwell or Lehmann orders, which we show do not imply the precision

order.

Symmetric, quasi-concave distributions include many common probability distributions beyond

the normal, such as logistic, extreme value, and double-exponential distributions. Our focus on

this class follows Chambers and Healy (2012), who demonstrate symmetry and quasi-concavity are

necessary for the posterior mean to robustly lie between the prior mean and the signal realization.

More precisely, they show that if the prior is not symmetric and quasi-concave, one can find a

symmetric and quasi-concave noise density (and vice versa) under which the posterior mean does

not lie between the prior mean and the signal realization.

Together with Chambers and Healy (2012), this paper shows that the attenuation effect holds

under broader conditions than previously recognized. But the effect is not universal. As Chambers

and Healy (2012) show, without symmetry and quasi-concavity, agents may overreact—the posterior

mean can lie farther from the prior mean than the signal. Moreover, as we show, greater informative-

ness in the Blackwell sense does not guarantee less attenuation: for some signal realizations, more

informative signals can lead to more attenuated updating.

Finally, we leverage Theorem 1 to derive implications of broader economic relevance for signal-

extraction problems:

• Prior Precision: Our main theorem implies a converse comparative-statics result regarding

prior precision (Corollaries 2 and 3): increasing the precision of the prior brings the posterior

mean closer to the prior mean for any signal realization.

• Average Posterior Means: We extend our analysis to average posterior means conditional on

the true state, which are relevant when agents acquire conditionally independent signals about

a common state. Under symmetry and quasi-concavity, conditional on the true state, the

average posterior mean lies between the state and the prior mean (Proposition 1).

• Comparative Statics for Average Posterior Mean: Greater (over)confidence in the signal brings

the average posterior mean closer to the true state (Proposition 2), whereas greater prior

precision brings it closer to the prior mean (Proposition 3).

3Furthermore, we demonstrate that a weaker condition than log-concavity suffices, which holds for many non-log-
concave noise distributions (Lemma 1).
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Related Literature This paper introduces a new information order and provides comparative-

statics results for signal structures with additive independent noise, commonly referred to as location

experiments.

Prior work has explored orderings on location experiments related to the value of information.

Boll (1955) shows that one location experiment Blackwell-dominates another if and only if the latter’s

noise term can be derived by adding an independent noise term to the former’s. This condition is very

restrictive, making location experiments comparable only in limited cases. In response, Lehmann

(1988) introduced the less restrictive Lehmann order to rank location experiments for monotone

decision problems. Our precision order is distinct from the Blackwell order, neither implying nor

being implied by it. The precision order strengthens the Lehmann order.

Other comparative statics results have been established for location experiments with log-concave

noise distributions, which satisfy the monotone likelihood-ratio property. Milgrom (1981) shows that

the strict monotone likelihood-ratio property ensures higher signals constitute “good news,” in the

sense of producing first-order stochastically dominant posteriors, for any prior.4 Conversely, Dawid

(1973) examines violations of the “good news”-property under heavy-tailed noise distributions, show-

ing that if the noise is sufficiently heavy-tailed relative to the prior, extreme observations are “re-

jected,” yielding posteriors that revert to the prior (for further discussion, see O’Hagan and Pericchi,

2012). Together with our results, this highlights log-concave location-scale experiments are a well-

behaved class of signal structures that retains key properties of the normal-normal model. Kartik,

Lee, and Suen (2021) provides a comparative statics result with economic applications for agents

with heterogeneous priors, termed “information validates the prior,” in which a more informative

experiment brings another agent’s posterior mean closer to one’s prior mean.

2 Model

We restrict attention to signal structures, where the signal equals the one-dimensional state plus

some independent noise, which are called location experiments. Formally, the random signal S is a

location experiment if it is the sum of the random state X and random noise ε that is independent

of X, which we write as ε ⊥⊥ X. We assume the noise ε has mean 0; that is, the signal is unbiased.

If not, one could easily derive an unbiased signal by subtracting the mean of ε from S.

Assumption 1 (Location Experiment).

S = X + ε (1)

ε ⊥⊥ X (2)

E[ε] = 0 (3)

Further, we make the technical assumption that the state X and noise ε admit positive, contin-

uously differentiable densities fX and fε with finite absolute first moments. This guarantees finite

4See also Chambers and Healy (2011) for a strengthening of Milgrom’s result and Heinsalu (2020) for an extension
and economic application of Chambers and Healy (2011).
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conditional expectation E[X|S = s]. We call fX the prior density and fε the noise density.

Assumption 2. The random state X and noise ε admit positive, continuously differentiable densities

fX , fε and have finite absolute first moments.

Following Chambers and Healy (2012), we assume symmetric and quasi-concave prior and noise

densities.5 They show that without these assumptions, the posterior mean does not necessarily lie

between the prior mean and the signal realization. We believe that our comparative statics result is

only interesting when the posterior mean is attenuated in the first place.

Assumption 3. The prior and noise densities fX and fε are symmetric and quasi-concave.

In particular, the prior density fX is symmetric around E[X] and the noise density fε is symmetric

around zero by (3).

Chambers and Healy (2012) show the following result, which we include for later reference.

Fact 1 (Chambers and Healy, 2012, Proposition 3). Under Assumptions 1 to 3, for any signal

realization s, the posterior mean E[X|S = s] lies weakly between the prior mean E[X] and the signal

s. Formally,

∀s ≤ E[X] : s ≤ E[X|S = s] ≤ E[X],

∀s ≥ E[X] : s ≥ E[X|S = s] ≥ E[X].

Throughout the paper, we maintain Assumptions 1 to 3. In particular, all considered

prior and noise densities are assumed to be positive, symmetric, and quasi-concave, unless otherwise

specified.

3 Precision Order

One challenge to formalizing the idea that imprecision attenuates updating is to find the right order

on signal structures. We show that the following new order, which we call the precision order, is

characteristic of our desired result. Below, we discuss the relation between the precision order and

well-known information orders like the Blackwell and Lehmann orders.

We define the precision order for the class of location experiments that satisfy Assumptions 1

to 3. We first define this order on noise terms (or, more generally, on random variables) and then

extend it to the associated location experiments.

Definition 1 (Precision Order). Let ε̃ and ε be random variables with positive, symmetric-around-0,

and quasi-concave densities fε̃ and fε, respectively. We say ε̃ is less precise than ε if the likelihood

ratio
fε̃(x)

fε(x)

5Quasi-concave densities are also called unimodal densities.
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Figure 1: The densities of ε ∼ N (0, 1) and ε̃ ∼ N (0, 1.52): the former distribution is more precise.

is nondecreasing in x for x > 0. Further, we say the location experiment S̃ = X + ε̃ is less precise

than location experiment S = X + ε if ε̃ is less precise than ε.

Note that by the symmetry of densities, the definition implies the likelihood ratio fε̃(x)/fε(x)

is weakly decreasing in x for x < 0. Thus, the precision order requires that, for positive values, ε̃

likelihood-ratio dominates ε and, for negative values, ε̃ is likelihood-ratio dominated by ε. In other

words, the less precise location experiment has a noise term further away from 0 in the sense of

likelihood-ratio domination. Figure 1 gives an example of two noise distributions ranked by the

precision order. The more precise distribution has a higher density at zero, which falls faster as we

move away from zero.

A natural question is whether the precision order holds under natural operations on the noise

densities. In section 4.1, we show that when we scale up a symmetric, log-concave density by a

constant k > 1, the resulting density is less precise.

How does the precision order relate to existing information orders? The precision order is neither

implied by nor implies the Blackwell order. To see why the precision order is not implied by the

Blackwell order, consider the latter’s restrictive nature for location experiments. As Boll (1955)

shows, two location experiments are Blackwell ordered if only if the noise term of one experiment

can be obtained from the other’s noise term by adding independent noise. Cramér’s decomposition

theorem further implies that a normal location experiment (i.e., S = X + ε, ε ∼ N (µ, σ2)) Blackwell

dominates another location experiment only if the latter is also normal (Cramér, 1936). By contrast,

the precision order allows for normal location experiments to be less precise than experiments with

non-normal noise. On the other hand, the precision order does not imply the Blackwell order, as

illustrated by the noise term ε̃ = ε + ε′, that is the independent sum of a standard Cauchy ε and

ε′ ∼ U [−1, 1]. Computing the density of ε̃ shows that it is not less precise than ε.

The precision order lies at the intersection of two important orders: the convex order (also

called mean-preserving spread order) on noise distributions, and the Lehmann order on location

experiments. One can show that if the location experiment S = X + ε′ is less precise than S =

X + ε, then noise ε′ is a mean-preserving spread of noise ε.6 The Lehmann order characterizes

6If S′ is less precise than S, the CDFs of ε′ and ε cross once. Together with ε′ and ε having equal means, this implies
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what experiments are more valuable in all monotone decision problems (Lehmann, 1988; Quah and

Strulovici, 2009). This order is defined only for location experiments with log-concave noise, because

only these location experiments satisfy the required monotone likelihood-ratio property. One can

show for location experiments with log-concave noise, the precision order implies the Lehmann order.7

4 Results

Our main result establishes that imprecision attenuates updating if and only if location experiments

are ranked by the precision order, under the additional assumption of a log-concave prior. Recall

that throughout the paper, all considered location experiments are assumed to satisfy Assumptions

1 to 3.

Theorem 1 (Imprecision Attenuates Updating). Let the prior density be log-concave. Consider two

location experiments S = X + ε and S̃ = X + ε̃. For every signal realization, the posterior mean

under S̃ is closer to the prior mean than is the posterior mean under S, if and only if S̃ is less precise

than S. Formally,

∀s ≤ E[X] : E[X|S = s] ≤ E[X|S̃ = s] ≤ E[X]

∀s ≥ E[X] : E[X|S = s] ≥ E[X|S̃ = s] ≥ E[X]
(4)

if and only if S̃ is less precise than S.

An immediate implication of this result is as follows. Consider two agents who observe the same

signal, such as an economic forecast, but differ in their assessment of the signal precision. The agent

who assumes greater precision will form a posterior mean closer to the signal, regardless of the signal

realization.

The proof, relegated to the Appendix, demonstrates necessity and sufficiency of the precision

order. Necessity is the easier direction and shown by constructing a counterexample when two

location experiments are not precision-ordered. Sufficiency is more involved. We can suppose without

loss that the signal realization s is larger than the prior mean. To the right of s, the more precise

signal results in a likelihood-ratio dominated posterior, lowering decreases the posterior mean. To

the left of the s, the more precise signal results in a likelihood-ratio dominant posterior, raising

the posterior mean. The proof establishes that the former effect dominates, using a sequence of

inequalities and bounds, leveraging symmetry, quasi-, and log-concavity assumptions.

one distribution majorizes the other; see also Diamond and Stiglitz (1974). Note that a mean-preserving spread is less
demanding than the Blackwell order on location experiments, which requires that the additional noise is independent.

7On such location experiments, the Lehmann order coincides with the dispersive order on the noise distributions,
which requires that any two quantiles are weakly further apart under the more dispersed noise distribution. Formally,
let ε and ε′ have CDFs F and G, respectively, and let F−1 and G−1 denote here the right-continuous inverses. ε is
smaller in the dispersive order than ε′ if ∀ 0 < α ≤ β < 1 : F−1(β)− F−1(α) ≤ G−1(β)−G−1(α). When we truncate
the noise to positive values, the precision order implies the likelihood-ratio order. As is known, the likelihood-ratio
order implies the hazard-rate order (e.g., Shaked and Shanthikumar, 2007, Theorem 1.C.1). The hazard-rate order
together with densities being log-concave implies the dispersive order (Bagai and Kochar, 1986, Theorem 1). One can
easily see that if the dispersive order holds for all 1/2 ≤ α ≤ β < 1, then it holds for all 0 < α ≤ β < 1.
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For this as well as the following results, an analogous strict version of the result holds. We can

require that the noise term is replaced by a strictly less precise noise in the sense that the likelihood

ratio in Definition 1 is strictly decreasing. Then, for signal realizations distinct from the prior mean,

the posterior mean is strictly closer to s.

Next, we show that our precision order arises endogenously in location-scale experiments with

log-concave, and many non-log-concave, noise densities.

4.1 Location-Scale Experiments

We introduce to our location experiment a scale parameter σ ∈ R≥0 that scales the noise term, such

that

Sσ = X + σε. (5)

We show comparative statics on the scale parameter σ.

Lemma 1. If ε is symmetric around 0 and log fε(e
x) is concave, then ∀σ′ > σ > 0, σ′ε is less precise

than σε. In particular, log fε(e
x) is concave if the density fε(x) is log-concave.8

In the Appendix, we show that Lemma 1 follows from a known result. Many commonly used

distributions are symmetric and log-concave, such as the normal, logistic, extreme value, and double-

exponential distributions. Further, we give examples of symmetric and non-log-concave distributions

for which log fε(e
x) is nevertheless concave, such as the Student-t, Cauchy, and the “double” Pareto

distribution.

Together, Theorem 1 and Lemma 1 imply the following important result. By Lemma 1, the result

still holds if we weaken the assumption that the noise density fε is log-concave to log fε(e
x) being

concave.

Corollary 1. Let the prior and noise densities be log-concave. The posterior mean is weakly closer

to the prior mean under a larger scale parameter, for any signal realization s. Formally, if σ̃ > σ > 0,

then

∀s ≤ E[X] : E[X|Sσ = s] ≤ E[X|Sσ̃ = s] ≤ E[X],

∀s ≥ E[X] : E[X|Sσ = s] ≥ E[X|Sσ̃ = s] ≥ E[X].

The next section shows comparative statics results for changing the prior instead of the noise,

exploiting a symmetry in location experiments.

4.2 Comparative Statics on the Prior

For location experiments, the posterior density is symmetric in the prior and in the noise density.

This follows from the more general property of Bayesian updating that the posterior is proportional

8This can be seen easily if the log-density is differentiable. Define ϕ = log f and ψ = exp. Then, ϕ is concave and
decreasing for positive values and ψ is convex, increasing, and obtains positive values only, which implies (ϕ ◦ψ)′′(x) =
ψ′′(x)(ϕ′ ◦ ψ)(x) + (ψ′(x))2(ϕ′′ ◦ ψ)(x) ≤ 0.
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to the product of the prior and the likelihood, p(x|s) ∝ p(x, s) = p(x)p(s|x). In the case of loca-

tion experiments, this implies the density of the posterior conditional on S = s is proportional to

fX(x)fε(s−x). Using this insight, Theorem 1 immediately implies a dual result for making the prior

more precise.

Corollary 2. Let the noise density be log-concave. The posterior mean is weakly closer to the prior

mean under a more precise prior, for any signal realization s. Formally, if E[X] = E[X̃] and X̃ is

more precise than X, then

∀s ≤ E[X] : E[X|X + ε = s] ≤ E[X̃|X̃ + ε = s] ≤ E[X],

∀s ≥ E[X] : E[X|X + ε = s] ≥ E[X̃|X̃ + ε = s] ≥ E[X].

To illustrate Corollary 2, suppose that two agents observe the same signal about the state but

one agent has a more precise prior (but with the same mean). Corollary 2 implies that the agent

with the more precise prior has a posterior mean that is closer to the prior mean, for any signal

realization.

By the same argument, an analogous dual result to Corollary 1 holds for scaling the prior instead

of the noise density. If X has density fX(x), then kX has density 1/kfX(x/k).

Corollary 3. Let the prior and noise densities be log-concave. For any signal realization s, the

posterior mean is weakly closer to the prior mean if we scale down the prior. Formally, if 0 < k̃ < k

and we normalize the prior mean to zero, E[X] = 0, then

∀s ≤ E[X] : E[kX|kX + ε = s] ≤ E[k̃X|k̃X + ε = s] ≤ E[X],

∀s ≥ E[X] : E[kX|kX + ε = s] ≥ E[k̃X|k̃X + ε = s] ≥ E[X].

4.3 Average Posterior Means

Our previous comparative statics results hold for any signal realization and thus speaks to situations

where agents observe the same signal. However, in many situations, agents observe distinct signals

from the same signal structure, that is their signal realization are independent conditional on the

state. Further, often we do not observe agent’s signal realizations but only the average posterior

mean, such as when we observe only aggregate behavior from a population of individuals. What can

be said about comparative statics with respect to the average posterior means given some true state

X?

Before we prove comparative statics results, we show that the average posterior mean necessarily

lies between the state X and the prior mean E[X], extending Fact 1.

Proposition 1. For any state x, the conditional average posterior mean E[E[X|S]|X = x] lies weakly

between the state x and the prior mean E[X]. Formally,

∀x ≤ E[X] : x ≤ E[E[X|S]|X = x] ≤ E[X],

∀x ≥ E[X] : x ≥ E[E[X|S]|X = x] ≥ E[X].
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fs|x

Figure 2: Illustrating the proof of Proposition 1.

The proof is illustrated using Figure 2. Let X > E[X] = 0. Conditional on state X, the

distribution of the signal S is is symmetric around X so its expectation equals X. Taking the

conditional expectation E[X|S] moves the distribution closer to E[X] as indicated by the arrows.

Given our assumptions, the conditional expectation is antisymmetric and s > 0 has a higher likelihood

than −s < 0. Thus, the overall effect on the average posterior mean is negative and E[E[X|S]|X] <

E[S|X] = X. Further, because the density of s is larger than the density of −s, integrating over all

s leads to a positive expectation, so E[X] < E[E[X|S]|X].

Overconfidence First, we prove a comparative statics result for overconfidence in the signal.

We consider two agents, A and B, that face the same objective signal structure S = X + ε but

update differently because they have different confidence in the signal. That is, agent i ∈ {A,B}
forms their conditional expectation Ei[X|S = s] as if S = X + εi, Ei[X|S = s] := E[X|X + εi = s].

Especially empirically relevant is the case overconfidence in the signal, also called overprecision, which

is pervasive (Moore and Healy, 2008). We define a relative notion of overconfidence by generalizing

the definition in Ortoleva and Snowberg (2015), which is based on the normal-normal model, using

our Definition 1.

Definition 2. A is more confident than B in the signal if εA is more precise than εB.

Using this definition, we prove the following comparative statics result.

Proposition 2. Let the prior density be log-concave and A be more confident than B. Conditional on

any state x, the average posterior mean of A is weakly closer to the state than the average posterior

mean of B. Formally,

∀x ≤ E[X] : x ≤ E[EA[X|S]|X = x] ≤ E[EB[X|S]|X = x],

∀x ≥ E[X] : x ≥ E[EA[X|S]|X = x] ≥ E[EB[X|S]|X = x].

This shows that more overconfident agents have, on average, posterior means closer to the state

X and further away from their prior mean E[X].
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Figure 3: Illustrating the proof of Proposition 2

The proof builds on the proof of Proposition 1 and is illustrated using Figure 3. Because A is

more overconfident in the signal, their posterior mean is closer to the signal for any signal realization

s as well as −s. For positive X, because s > 0 is more likely than −s, the overall effect on the

average posterior mean is positive. Then, the result follows from Proposition 1.

Prior Precision Second, we show comparative statics with respect to the prior precision. Given

some state X, consider two agents, A and B, with symmetric and quasi-concave priors that have the

same mean, where agent A’s prior is more precise than B’s. Then, we have from the argument in

Proposition 2 and the Corollary 2, we immediately obtain the following result.

Proposition 3. Let the noise density be log-concave and A’s prior be less precise than B’s. Condi-

tional on any state x, the average posterior mean of A is weakly closer to the state than the average

posterior mean of B. Formally,

∀x ≤ E[X] : x ≤ E[EA[X|S]|X = x] ≤ E[EB[X|S]|X = x],

∀x ≥ E[X] : x ≥ E[EA[X|S]|X = x] ≥ E[EB[X|S]|X = x].

5 Conclusion

In this paper, we extended the attenuation effect of imprecise information beyond the normal-normal

model. By introducing a new order of precision, based on likelihood-ratio dominance, we demon-

strated that imprecision attenuates expectations toward the prior mean across a broad class of

distributions commonly used in economic modeling. This generalization provides a more robust the-

oretical foundation for interpreting empirical observations of attenuated behavior as resulting from

imprecision, whether observational or cognitive.

Our findings also have broader implications for signal-extraction problems. We established com-

parative statics results regarding prior precision, showing that increased prior precision shifts the

10



posterior mean toward the prior mean, for any given signal realization. Additionally, we analyzed

how overconfidence and prior precision affect the average posterior mean. Perhaps surprisingly, our

results show that the posterior means of overconfident agents are on average closer to the truth while

those of agents with more precise priors are further away from it.
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6 Appendix

6.1 Proof of Theorem 1

Proof. We, first, show necessity and, second, sufficiency of the precision order for the ordering re-

quirement (4).

Lemma 2 (Necessity). If ε̃ is not less precise than ε, then there exist a symmetric, log-concave prior

and a signal realization s ∈ R such that the ordering requirement (4) of Theorem 1 is violated.

Proof. We first find a uniform prior and a signal realization s such that (4 is violated. Then, we

approximate the uniform prior with a symmetric, log-concave prior density that is positive everywhere

First, if ε̃ is not less precise than ε, then the likelihood-ratio fε̃(x)/fε(x) has a strictly negative

derivative for some x = s > 0.9 By continuous differentiability, fε̃(x)/fε(x) has a strictly negative

derivative on some interval [s− δ, s+ δ] around s.

Consider the uniform prior on [−δ, δ], fU
X (x) = 1/(2δ). Let f be the posterior density upon

observing X+ ε̃ = s and g be the posterior density upon observing X+ ε = s. The posterior density

f(x) is proportional to the product fU
X (x)fε̃(s− x) and the posterior density g(x) is proportional to

the product fU
X (x)fε(s− x), so the ratio f(x)/g(x) of the posterior densities is proportional to

fε̃(s− x)

fε(s− x)
.

9If both noise densities fε and fε̃ are continuously differentiable and positive, then the likelihood ratio fε̃/fε is
continuously differentiable.
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By the above, this likelihood ratio is strictly increasing in x on the support [−δ, δ] of the prior,

so the posterior under signal S̃ = s strictly likelihood-ratio dominates the posterior under signal

S = s. Hence, the posterior mean is strictly greater under the less precise signal, E[X|X + ε̃ = s] >

E[X|X + ε = s], despite s > 0 = E[X], violating (4).

Second, we approximate the uniform prior [−δ, δ] with δ > 0 with a symmetric, log-concave prior,

such that the posterior mean converges (pointwise) for any signal realization s. For any d > 0, define

the prior density fd
X(x) via

log fd
X(x) =


c, if x ∈ [−δ, δ]

c− d(x− δ)2, if x > δ

c− d(x− (−δ))2, if x < −δ.

where c is the unique constant such that fX integrates to 1. The density fX is symmetric around

0, log-concave, and integrable. As we let d go to +∞, the density fd
X pointwise converges to the

uniform density fU
X . Using Lebesgue dominated convergence theorem, we show that as we let d go

to +∞, the posterior mean under signal realization s converges:∫
xfd

X(x)fε(s− x)dx∫
fd
X(x)fε(s− x)dx

−−−→
d→∞

∫
xfU

X (x)fε(s− x)dx∫
fU
X (x)fε(s− x)dx

.

To show that the numerator converges, note that by fd
X(x) < 1/(2δ), the integrand is bounded by

xfε(s − x)/(2δ), which is integrable by ε having a finite first absolute moment. Thus, by Lebesgue

dominated convergence theorem, the integral converges to
∫
xfU

X (x)fε(s− x)dx.

To show that the denominator converges, note that for any d > 0, fd
X(x) < 1/(2δ). Thus, the

integrand is bounded by fε(s−x)/(2δ), which is integrable. By the Lebesgue dominated convergence

theorem, the integral converges to
∫
fU
X (x)fε(s− x)dx. Because the denominator is strictly positive,

the ratio converges.

By E[X|X + ε̃ = s] > E[X|X + ε = s] under uniform prior fU
X , we can choose a d large enough

such that the same ordering requirement holds under prior fd
X .

The rest of the proof concerns the harder direction, that is, showing that the precision order is

sufficient for (4). Without loss of generality, the signal realization is zero, s = 0. If E[X] = 0, then

the posterior mean is zero by Fact 1 and we are done. Assume E[X] < 0 (the case E[X] > 0 is

analogous). We prove that for strictly more precise noise, the posterior mean becomes strictly closer

to 0. Let ε̃ be less precise than ε, and fε̃ and fε denote their respective densities. Further, let f

denote the posterior density under noise ε̃ after observing signal s = 0 and g analogously under noise

ε.

The posterior mean is

E[X|X + ε = 0] =

∫ 0

−∞
xg(x)dx+

∫ ∞

0
xg(x)dx =

∫ ∞

0
−x(g(−x)− g(x))dx,
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and analogously with density f instead of g for the signal with greater noise. The proof revolves

around showing that the following integral is positive:

E[X|X + ε = 0]− E[X|X + ε̃ = 0] =

∫ ∞

0
−x

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx (6)

First, we prove the following result regarding the integrand of (6), which uses that fε(x)
fε̃(x)

is strictly

decreasing for x > 0.

Lemma 3. There is some c > 0 such that the integrand of (6) is strictly negative for x ∈ [0, c) and

strictly positive for x ∈ (−c,∞).

Proof. Again, the density f(x) is proportional to fX(x)fε̃(x) and g(x) to fX(x)fε(x). Thus, there is

some factor C > 0 such that

g(−x)− g(x) = C
fε(−x)

fε̃(−x)
f(−x) + C

fε(x)

fε̃(x)
f(x) = C

fε(x)

fε̃(x)
(f(−x)− f(x)),

where we have used the symmetry of the noise densities. Thus, the integrand of (6) is negative if,

and only if, C fε(x)
fε̃(x)

> 1.

The ratio fε(x)
fε̃(x)

is strictly decreasing for x > 0 by assumption. As both are densities that integrate

to 1, the ratio must cross 1/C and by strictly decreasing ratio, the crossing point must be unique up

to sign. Let c be the unique positive x at which g(x)
f(x) = 1/C. Then, for x ∈ [0, c) we have C fε(x)

fε̃(x)
> 1

and for x ∈ (c,∞) we have C fε(x)
fε̃(x)

< 1.

Without loss, we can rescale the space, so that c = 1. Using Lemma 3, we have that∫ ∞

0
−x

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx

>∫ 1

0
−1 ·

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx+

∫ ∞

1
−1 ·

[
(g(−x)− g(x))− (f(−x)− f(x))

]
dx

=

(−G2 +G3 −G1 +G4)− (−F2 + F3 − F1 + F4) (7)

where F1 through F4 are the probabilities of according to f on four mutually exclusive and exhaustive
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Figure 4: The posteriors f (bold) and g (dashed) after observing X + ε̃ = 0 and X + ε = 0,
respectively.

intervals

F1 :=

∫ ∞

1
f(−x)dx =

∫ −1

−∞
f(x)dx

F2 :=

∫ 1

0
f(−x)dx =

∫ 0

−1
f(x)dx

F3 :=

∫ 1

0
f(x)dx

F4 :=

∫ ∞

1
f(x)dx

so F1, F2, F3, F4 > 0 and F1 + F2 + F3 + F4 = 1. G1 through G4 are defined analogously. We thus

need to show that

−G2 +G3 −G1 +G4 > −F2 + F3 − F1 + F4. (8)

The proof proceeds as follows. As the Figure 4 depicts, G2 and G3 are larger than F2 and F3,

respectively, and G1 and G4 are smaller than F1 and F4, respectively. We show in Lemma 7 that (8)

would hold if G2 and G3 were larger than F2 and F3, each, by the same factor and similarly for G1

and G4. Lemma 4 to 6 argue that in fact these ratios are not the same and thus −G2+G3−G1+G4

is even larger, proving (8).

Before that, we prove the following lemma, which uses the log-concavity and symmetry of the

prior density as well as the symmetry of the noise density.

Lemma 4. The posterior probability-ratio f(−x)
f(x) is strictly increasing in x.

Proof. By Bayes’ law, f is proportional to the product fX(x)fε̃(s − x) = fX(x)fε̃(x). The ratio is

strictly increasing if its logarithm, which is as follows, is strictly increasing in x. Using the symmetry
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of fε̃ and fX we obtain

log

(
f(−x)

f(x)

)
= log

(
fX(−x)fε̃(−x)

fX(x)fε̃(x)

)
= log

(
fX(−x)

fX(x)

)
= log fX(−x)− log fX(x) = log fX(x+ 2E[X])− log fX(x),

where we have used that fX(x) is symmetric around E[X] < 0, so

log fX(−x) = log fX
(
E[X] + (−x− E[X])

)
= log fX

(
E[X]− (−x− E[X])

)
= log fX(x+ 2E[X]).

By strict concavity of log fX and E[X] < 0, the difference log fX(x + 2E[X]) − log fX(x) is strictly

increasing.

Using Lemma 4, we prove two lemmas regarding ratios of the terms in (7).

Lemma 5. F1
F4

≥ F2
F3
.

Proof. We have that

F1

F4
=

∫∞
1 f(−x)dx∫∞
1 f(x)dx

=

∫∞
1

f(−x)
f(x) f(x)dx∫∞

1 f(x)dx
≥

∫ 1
0

f(−x)
f(x) f(x)dx∫ 1
0 f(x)dx

=

∫ 1
0 f(−x)dx∫ 1
0 f(x)dx

=
F2

F3
.

The inequality holds because by Lemma 4. The two inner terms are the expectation of f(−x)
f(x) with

respect to the posterior distribution f conditional on the domain [1,∞) and [0, 1], respectively. The

former distribution first-order stochastically dominates the latter, thus the inequality follows from
f(−x)
f(x) being strictly increasing in x for x > 0.

The following lemma uses that fε(x)
fε̃(x)

is decreasing for x > 0.

Lemma 6. 1 < G2
F2

< G3
F3

and G1
F1

< G4
F4

< 1.

Proof. Using g(x) = fε(x)
fε̃(x)

f(x)C, where C is the ratio of the integration constants, and fε(−x)
fε̃(−x) =

fε(x)
fε̃(x)

(by symmetry), we have

G2

F2
=

∫ 1
0

g(−x)
f(−x)f(−x)Cdx∫ 1
0 f(−x)dx

=

∫ 1
0

fε(x)
fε̃(x)

Cf(−x)dx∫ 1
0 f(−x)dx

G3

F3
=

∫ 1
0

g(x)
f(x)f(x)dx∫ 1
0 f(x)dx

=

∫ 1
0

fε(x)
fε̃(x)

Cf(x)dx∫ 1
0 f(x)dx

.

Thus, both ratios are expectations of the function fε(x)
fε̃(x)

over the interval [0, 1] multiplied by C but

with densities f(−x)/(
∫ 1
0 f(−x)dx) and f(x)/(

∫ 1
0 f(x)dx), respectively. Because f(−x)

f(x) is increasing

in x > 0 by Lemma 4, the former density likelihood-ratio dominates the latter. This implies first-

order stochastic dominance, which in turn implies a strictly smaller expectation since fε(x)
fε̃(x)

is a

strictly decreasing function by assumption. Thus, G2
F2

< G3
F3

.
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Moreover, by Lemma 3 and having normalized c = 1, fε(x)
fε̃(x)

C > 1 in the interval [0, 1). Hence, G2
F2

and G3
F3

, which are expectations of this ratio, are strictly greater than 1.

The proof of G1
F1

< G4
F4

< 1 is analogous, but with expectation over the domain [1,∞).

Define G̃2 = kF2 and G̃3 = kF3 with k > 1, and G̃1 = lF1 and G̃4 = lF4 with l < 1, such that

G̃2 + G̃3 = G2 + G3 and G̃1 + G̃4 = G1 + G4. By Lemma 6, G3
F3

> G̃3
F3

= G2+G3
F2+F3

= G̃2
F2

> G2
F2

, so

Q3 > Q̃3 and Q̃2 > Q2, implying −G2 +G3 > −G̃2 + G̃3. Analogously, −G1 +G4 > −G̃1 + G̃4.

−G2 +G3 −G1 +G4 > −G̃2 + G̃3 − G̃1 + G̃4. (9)

Finally, the following lemma concludes the proof.

Lemma 7. −G̃2 + G̃3 − G̃1 + G̃4 > −F2 + F3 − F1 + F4.

Proof. Define r := F2
F3

> 0 and R := F1
F4

> 0 where R > r by Lemma 5, and P := F2 + F3 and

p := F1 + F4.

We have G̃1 + G̃2 + G̃3 + G̃4 = G1 +G2 +G3 +G4 = F1 +F2 +F3 +F4 = 1. Thus, we can define

∆ := (G̃2+G̃3)−(F2+F3) = (F1−F4)−(G̃1+G̃4) with ∆ > 0 as well as kP = P+∆ and lp = p−∆.

From P = F2+F3 and r = F2/F3, it follows that −F2+F3 = P ( 1
1+r−

r
1+r ) = −P r−1

r+1 and analogously

−F1+F4 = −pR−1
R+1 . So, (−G̃2+ G̃3)− (−F2+F3) = −∆ r−1

r+1 and (−G̃1+ G̃4)− (−F1+F4) = ∆R−1
R+1 .

Note that d
dx

x−1
x+1 = 2

(x+1)2
> 0 for x > 0. Then, by R > r, R−1

R+1 > r−1
r+1 , so −G̃2 + G̃3 − G̃1 + G̃4 >

−F2 + F3 − F1 + F4.

By (9) and Lemma 7, we obtain −G2 +G3 −G1 +G4 > −F2 + F3 − F1 + F4.

6.2 Proof of Lemma 1

Proof. By our definition, the symmetric around 0 random variable ε is more precise than the sym-

metric around 0 random variable ε if [ε|ε > 0] is smaller in the likelihood ratio order than [ε|ε > 0].

It is not hard to show that for a non-negative continuous random variables X, aX is smaller in the

likelihood ratio order than X for all 0 < a < 1 if, and only if, log fε(e
x) is concave for x > 0 (e.g.

Hu, Nanda, Xie, and Zhu, 2004). Applying this result to X = [ε|ε > 0] yields the result.

The function log fε(e
x) is concave for x > 0 in particular if fε is log-concave and symmetric

around 0. Note that

d2

dx2
log fε(e

x) =
d

dx
ex(log fε)

′(ex) = ex(log fε)
′(ex) + e2x(log fε)

′′(ex).

The latter term is negative because fε is log-concave and the former term is negative because fε is

also symmetric around 0.

The main text gives several examples of commonly encountered symmetric, log-concave distri-

butions. Below, we prove for symmetric distributions that are not log-concave that log fε(e
x) is

nevertheless concave.
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Non-log-concave examples The Student-t distribution with parameter ν > 0, which includes as

a special case the Cauchy distribution, gives

f(x) ∝
(
1 +

x2

ν

)−(ν+1)/2

⇒ log f(ex) = C − ν + 1

2
log(1 +

1

v
e2x)

⇒ d2

dx2
log f(ex) =

d

dx
− ν + 1

2

2
ν e

2x

1 + 1
ν e

2x
= −ν + 1

2

4
ν e

2x

(1 + 1
ν e

2x)2
< 0,

and hence has log-concave f(ex).

Creating a symmetric distribution from the Pareto distribution, analogous to the double-exponential

distribution, with α > 0 gives

f(x) ∝ x−α−1 ⇒ log f(ex) = C − (α+ 1)x,

with log-linear and hence log-concave f(ex).

6.3 Proof of Proposition 1

Proof. By symmetry and translation invariance of location experiments, it is without loss to suppose

that X ≥ E[X] = 0.

First, we show the inequality E[X] = 0 ≤ E[E[X|S]|X]. We have

E[E[X|S]|X] =

∫ ∞

−∞
E[X|S = s]fε(s−X)ds

=

∫ ∞

0

(
E[X|S = s]fε(s−X) + E[X|S = −s]fε(−s−X)

)
ds. (10)

By symmetry of the prior and noise densities, E[X|S = s] = −E[X|S = −s] and by Fact 1, E[X|S =

s] > 0. By symmetry around 0 and quasi-concavity of the noise density, fε(−s−X) = fε(s+X) <

fε(s−X) and hence, the integrand of (10) is positive for every s ∈ [0,∞).

Second, we show E[E[X|S]|X] ≤ X. We have by symmetry of fε around 0,

X =

∫ ∞

−∞
sfε(s−X)ds

=

∫ ∞

0

(
sfε(s−X) + (−s)fε(−s−X)

)
ds. (11)

We need to show that (10) is less or equal to (11). By Fact 1, s ≥ E[X|S = s] but −s ≤ E[X|S = −s],

preventing a direct conclusion of the result. However, by symmetry, s − E[X|S = s] = E[X|S =

−s]− (−s) and as before fε(s−X) > fε(−s−X). Thus, for every s ∈ [0,∞), the integrand of (10)

is less or equal to the integrand of (11).
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6.4 Proof of Proposition 3

We prove Proposition 3. Proposition 2 follows by analogous arguments.

Proof. For the first statement, we can again exploit the symmetry of the conditional expectations

EA[X|S] and EB[X|S] and that the density of S is larger for x > 0 than for x < 0.

Suppose, without loss, that X > E[X] = 0. By Proposition 1, we have E[X] ≤ E[EA[X|S]|X]

and E[X] ≤ E[EB[X|S]|X]. It remains to show that E[EA[X|S]|X] ≤ E[EB[X|S]|X].

E[EA[X|S]|X] =

∫ ∞

−∞
EA[X|S = s]fε(s−X)ds =

∫ ∞

0

(
EA[X|S = s]fε(s−X)− EA[X|S = −s]fε(s−X)

)
ds

E[EB[X|S]|X] =

∫ ∞

−∞
EB[X|S = s]fε(s−X)ds =

∫ ∞

0

(
EB[X|S = s]fε(s−X)− EB[X|S = −s]fε(s−X)

)
ds

By Theorem 1, we have EA[X|S = s] ≤ EB[X|S = s] and EA[X|S = −s] ≥ EB[X|S = −s] for s > 0,

preventing a direct conclusion of the result. However, by symmetry of the prior and the noise density,

we know that EB[X|S = s]− EB[X|S = s] = EA[X|S = −s]− EB[X|S = −s] and by symmetry and

quasi-concavity of the noise density and X > 0, we have that fε(s−X) > fε(s+X) = fε(−s−X)

for s > 0. Thus, the integrand of the first equation is smaller than the integrand of the second for

any s > 0.

For the second statement, conditional on X, the distribution of S is the same for A and B. For

any realization S, EA[X|S] is closer to E[X] than EB[X|S]. So, the conditional distribution of the

absolute distance of EA[X|S] to E[X] is smaller in first-order stochastic dominance than the one of

EB[X|S].
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