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Abstract

We study the optimal design of public recognition schemes to incentivize agents who care

about their social image – the public’s belief about their private type, such as ability or proso-

ciality. We allow public recognition schemes to take the form of any signal structure, employing

an information design approach. When agents are risk neutral over image, we show that one can

restrict attention without loss to monotone partitional signals and characterize the optimum. If

agents are risk averse over image, it may be optimal to maintain full privacy and not screen the

agent – by contrast to monetary incentive schemes where screening remains optimal even under

risk aversion.
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1 Introduction

In economics, incentives are typically studied in the form of monetary transfers. However, a grow-

ing body of evidence suggests that social image is a powerful motivator beyond material rewards

(Bursztyn and Jensen, 2017). Because individuals care about how they are perceived by others,

public recognition schemes – which reveal information about an agent’s behavior and thereby signal

something about their underlying characteristics – can be used to incentivize desired actions. For

instance, organizations implement ”Employee of the Month” programs that signal high performance

and incentivize effort. Schools employ grading systems that signal ability to the job market, moti-

vating human capital accumulation. Charities publicly acknowledge donors, signaling prosociality

and incentivizing donations. This paper studies how public recognition schemes can be optimally

designed to leverage these image concerns and promote desired behaviors.

While the optimal design of public recognition schemes has been studied across various con-

texts,1 the existing literature leaves two fundamental questions open.

First, what type of signal structures emerge as optimal when the principal is not constrained

to specific forms? Previous work imposes structural assumptions on the signal structures, such as

limiting them to partitional or normal signals. These constraints may overlook other potentially

optimal designs, so understanding the unconstrained optimal signal structures is crucial for both

theory and practice.

Second, how do agents’ preferences over their image affect the optimal design of recognition

schemes? Specifically, prior studies typically assume that agents are risk neutral with respect to

their image – they care linearly about the public’s expectation about their type. However, if agents

are risk averse regarding their image, then revealing information impose a social welfare cost. This

raises an important question: How should public recognition schemes be designed when agents

exhibit risk aversion over their image?

In this paper, we make progress on these questions by leveraging majorization and information

design tools. This approach allows us to study the optimal design problem without imposing any

restrictions on the types of information structures available to the principal. By doing so, we

provide a more general and robust framework that can accommodate a wide variety of settings and

agent preferences.

To address these questions, we consider the following model. An agent has a private type θ

– such as ability or degree of prosociality – drawn from a known distribution over the interval

Θ = [θ, θ]. Upon observing her realized type, the agent chooses an action a ∈ R+, incurring a cost

that increases with higher actions and decreases with her type. The public, however, only receives a

signal that is correlated with the agent’s action. The agent values the public’s belief about her type

1Previous literature has studied the optimal design of: privacy under prosocial signaling (Bénabou and Tirole,
2006; Bénabou and Tirole, 2011; Ali and Bénabou, 2020), performance evaluation under worker career concerns
(Holmström, 1999; Dewatripont et al., 1999), quality certification under endogenous quality provision (Albano and
Lizzeri, 2001; Zapechelnyuk, 2020), grading schemes under job-market signaling (Dubey and Geanakoplos, 2014;
Zubrickas, 2015; Onuchic and Ray, 2023), monopolistic pricing under conspicuous consumption (Rayo, 2013), and
taxation under welfare stigma (Blumkin et al., 2015).
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– her image. The principal designs the signal structure, referred to as a public recognition scheme,

with the objective of incentivizing the agent to take higher actions. We investigate the optimal

signal design when the signal is the sole instrument available to the principal for influencing the

agent’s behavior.

Our first results concerns the case when the agent is risk neutral with regard to image and cares

about the public’s expectation about her type. The resulting design problem is tractable despite

its high dimensionality, and a simple class of signal structures – monotone partitional signals –

emerges as optimal. Monotone partitional signals resemble grading or rating schemes and are often

used in practice.

To understand why these signals emerge as optimal, we need to understand the set of feasible

image payoffs within our model. When agents care linearly about the public’s expectation of their

type, their utility becomes a second-order expectation – the expected value of their expected type.

The set of feasible second-order expectations was characterized in the seminal work of Saeedi and

Shourideh (2024) in the context of rating design under moral hazard. By employing the majorization

tools from Kleiner et al. (2021), we provide a short alternative proof of this characterization,

demonstrating that any second-order expectation can be generated by publicly randomizing over

monotone partitional signals. Leveraging this connection to majorization, we generalize previous

results from the literature on public recognition schemes. Specifically, we show that in quasi-linear

settings, a monotone partitional signal structure is optimal – that is, the principal does not need

to randomize – and we analyze when the optimal signal is fully revealing or involves pooling over

certain intervals of types. Finally, our proof extends to higher-order expectations, showing they

have the same characterization as second-order expectations.

In the second part of our paper, we relax the risk neutrality assumption that is ubiquitous in

previous work. Prior studies implicitly assume that agents are risk-neutral with respect to their

image by assuming they care only about the public’s expected belief about their type.

While risk neutrality is a natural starting point, there are two reasons to consider risk aversion

over image as important. First, agents may have an intrinsic valuation of their image due to

psychological factors, leading to risk-averse behavior. Butera et al. (2022) provide evidence for

risk aversion over prosocial image, which supports this interpretation. Second, risk aversion over

image can be induced from risk aversion over other goods when image has instrumental value. For

example, if an agent values the public’s belief about her ability because her attainable wage in the

labor market depends on her expected ability, then risk aversion over income translates into risk

aversion over image.

Our second main result is that under risk aversion over image, full privacy may become optimal,

leading the principal to forego the possibility of screening the agent. We illustrate this result in

a two-type model and contrast it with monetary incentive schemes, where the principal always

employs some degree of screening to provide incentives.

The intuition behind this result is as follows. First of all, risk aversion over image makes

revealing information socially costly due to Jensen’s inequality: disclosing information creates a
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mean-preserving spread in the distribution of beliefs, lowering aggregate welfare. The principal

internalizes this cost either because they directly care about the agent’s well-being or because of

the agent’s participation constraint. Consequently, risk aversion pushes towards greater privacy.

While this force resembles the familiar efficiency-equity trade-off in the optimal taxation litera-

ture following Mirrlees (1971), we demonstrate a qualitative difference between image and standard

goods like money. In traditional screening problems involving monetary transfers, there is a trade-

off between providing incentives (through unequal allocations) and mitigating welfare losses from

risk aversion (favoring more equal allocations). Because, for small incentives, the loss from risk

aversion is of second order, some incentive provision is always optimal; complete equality (or “com-

munism”) is suboptimal.

However, when it comes to image, the push towards equality can be so strong that full privacy –

the only public recognition scheme that equalizes image across agents – becomes optimal. We show

that the aggregate welfare loss and the gain from providing incentives are of the same order because

to induce small incentives, the principal has to resort to random signal structures, and consequently

random allocations of image. Consequently, it may be optimal not to reveal information at all

because any level of information would impose a greater welfare loss than benefit through providing

incentives.

This result has implications for the economics of privacy, reviewed in Acquisti et al. (2016).

While some authors have argued for publicity as a means to incentivize socially desirable behavior

and provide economically useful information (Posner, 1978), a lack of privacy can lead to data

misuse by firms or governments (for the latter, see Tirole, 2021), wasteful signaling (Daughety and

Reinganum, 2010), and suppression of learning about societal preferences (Ali and Bénabou, 2020).

As pointed out by Butera et al. (2022), there is also a more immediate welfare cost of publicity

stemming from risk aversion over social image. We show that this force is so strong that complete

privacy may be optimal despite publicity incentivizing desirable behavior.

This paper is structured as follows. Section 2 introduces the model. Section 3 studies the model

when agents are risk neutral over image. Section 4 studies the model when agents are risk averse

over image.

2 Baseline Model

Let θ be an agent’s private type drawn from Θ = [θ, θ] according to some CDF F : Θ → R with

continuous and strictly positive derivative f . By θ we will denote a generic element of Θ and we

use bold symbols, such as θ, for random variables. The agent incurs linear cost a/θ for action

a ∈ R≥0, say effort; that is, higher types have smaller costs. The principal wants to maximize

the aggregate action
∫
a(θ)dF (θ). Without loss, we restrict attention to direct mechanisms.2 The

principal recommends an action schedule a(θ). To implement this action schedule, the principal

2One can show that the usual taxation principle holds: we can let the agent choose the action and the principal
chooses a signal structure about the chosen action. The principal can pool unchosen actions with the outside option,
which gives the worst reputation, see Rayo (2013).
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does not use monetary transfers but instead makes use of image motives by committing to revealing

a signal about the reported type.

As mentioned in the introduction, the model has a number of different interpretations, such

as a firm designing a performance evaluation scheme to incentive effort when workers have career

concerns, a school designing a grading schemes to incentive human capital accumulation under

job-market signaling, or, more abstractly, the optimal degree of privacy about agent’s public good

contributions when they engage in prosocial signaling.

Signal Structures and Image Payoff A version of this model was considered among others

by Rayo (2013), who assumed that the principal is restricted to partitional signal structures. We

do not impose any assumptions on the nature of signals and allow for arbitrary signal structures.

A signal structure (S, σ) consists of the set of signals S, and a map σ : Θ → ∆(S) assigning a

distribution of signals to each realized state.3 Equivalently, a signal structure can be modeled as

a Bayes-consistent distribution τ ∈ ∆(∆(Θ)) over posteriors π ∈ ∆(Θ) (Kamenica and Gentzkow,

2011). The distribution τ is Bayes consistent if Eτ [π] = µ, where µ is the measure µ ∈ ∆(Θ)

associated with CDF F . In general, agents can value the belief π held by the public as v(π),

v : ∆(Θ) → R. Because the agent knows their type θ, they need to condition on θ = θ to form

their expected image payoff. We say the payoff V : Θ → R is generated by a signal structure

τ ∈ ∆(∆(Θ)) if V (θ) corresponds to the expected value v(π) of the posterior π, conditioning on

the true state being θ, that is,

V (θ) = Eτ [v(π)|θ = θ].

We say V : Θ → R is feasible if it is generated by some signal structure τ .

Agent’s Utility The utility Ũ(θ, θ′) of agent θ from reporting θ′ is

Ũ(θ, θ′) = V (θ′)− 1

θ
a(θ′).

Equivalently, we can define the agent θ as choosing θ′ to maximize utility U(θ, θ′) = θŨ(θ, θ′), that

is,

U(θ, θ′) = θV (θ′)− a(θ′).

Instead of letting the principal choose a signal structure, we write their problem as choosing the

second-order expectation V (θ) subject to feasibility, that is, V (θ) can be generated by some signal

structure.

Principal’s Problem The principal maximizes the expected action subject to incentive com-

patibility (IC), voluntary participation or individual rationality (IR), and feasibility (F) of the

3To ensure that conditional expectations are well-defined, we require that the set of signals S is a Polish space
endowed with its Borel sigma-algebra and σ : Θ → ∆(S) is such that for all measurable A ⊆ S, σ(A, θ) is measurable
in θ.
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second-order expectation V (θ). To formulate the participation constraint, we assume that upon

not participating, the agent obtains the minimal second-order expectation θ, which is the most

favorable to the principal. Later, we will show that this assumption is without loss.

max
a,V :Θ→R

∫ θ

θ
a(θ)dF (θ) (P)

s.t.

θV (θ)− a(θ) ≥ θV (θ′)− a(θ′) ∀θ, θ′ (IC)

θV (θ)− a(θ) ≥ θ · θ ∀θ (IR)

V is feasible. (F)

The principal’s problem (P) looks similar to a standard screening problem where the principal

allocates V (θ), usually money or the allocation probability of a good, to implement action schedule

a(θ). However, the screening problem has two peculiarities. First, is has a type-dependent partici-

pation constraint (IR). Second, it has a non-standard feasibility constraint (F). We first deal with

(IR) and simplify the principal’s problem, before we turn to the feasibility constraint in section 3.

Rewriting the Principal’s Problem Suppose (IR) holds for θ. By (IC) and the envelope

theorem, the derivative of the left-hand side of (IR) in θ is V (θ). The derivative of the right-hand

side in θ is θ. Any feasible V (θ) satisfies V (θ) ∈ [θ, θ], thus if (IR) holds for θ, it holds for all θ.

Thus, we can rewrite (IR) as

θ · θ ∀θ (IR’)

By supermodularity of the agent’s utility in θ and V (θ), (IC) implies that V (θ) is monotone, that is

θ′ > θ implies V (θ′) ≥ V (θ). Following standard arguments we can rewrite the principal’s problem

as a linear maximization problem P’ in V (θ) subject to V (θ) being monotone and feasible.

max
V :Θ→R

∫
V (θ)

(
θ − 1− F (θ)

f(θ)

)
dF (θ) (P’)

s.t.

V (θ) ≤ V (θ′) ∀θ < θ′ (MON)

V is feasible. (F)

The principal’s problem reduces to a linear optimization problem over feasible, monotone V . The

crucial question is what monotone V (θ) are feasible.
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3 Risk Neutrality over Image

In this section, we consider the special case where the value of a posterior equals the expected type,

v(π) = Eπ[θ],

as assumed by virtually all of the previous literature. In this case, V (θ) equals the second-order

expectation P (θ), defined as follows. A signal structure (S, σ) defines a joint distribution of θ and

s: for each realized state θ = θ, a random signal s is drawn from S according to the distribution

σ(θ). We define the second-order expectation generated by signal structure (S, σ) as

P (θ) := E[E[θ|s]|θ = θ].

We say P (θ) : Θ → R is feasible if it is generated by some signal structure (S, σ). For clarity of

exposition, we use P (θ) instead of V (θ) in this section.

Saeedi and Shourideh (2022) study second-order expectations in the context of moral hazard

and characterize the feasible, monotone P (θ). To state their result, we introduce the following

notation.

For a subset Ω ⊂ R, let L1(Ω) denote the real-valued, integrable, and right-continuous functions

defined on Ω. For monotone functions P ∈ L1(Θ), we say that P ismajorized by the identity function

with respect to F , denoted by P ≺F id, if

∫ θ

θ̂
P (θ)dF (θ) ≤

∫ θ

θ̂
θdF (θ) ∀θ̂ ∈ (θ, θ],∫ θ

θ
P (θ)dF (θ) =

∫ θ

θ
θdF (θ).

(1)

Note that the usual majorization constraint is written with integrals with respect to the Lebesgue

measure, while the integrals in this generalized majorization relation are with respect to the measure

with CDF F . Under a continuous CDF F , one can rewrite (MAJ) as a standard majorization

constraint by going into quantile space through a change of variables. This generalized majorization

constraint is appropriate for the following result due to Saeedi and Shourideh (2022) because it

also holds for discrete distributions (which we do not show in the present version of this draft).

Theorem 1 (Saeedi and Shourideh, 2022). Monotone P ∈ L1(Θ) are feasible if and only if P ≺F id,

that is, P is majorized by the identity function with respect to F .

Saeedi and Shourideh (2022) prove their results using an induction argument for finite distri-

butions of θ and an approximation argument for continuous distributions. Here, we present a short

proof of their result based on extreme point and majorization techniques, building on a result from

Kleiner et al. (2021). In addition to showing a connection between this fundamental result and

results in majorization, our proof delivers additional insights relevant to our screening problem, see

the following subsection 3.1.

7



Before we show our proof, we state two preliminary result about majorization and define mono-

tone partitional signal structures. The first statement is a known result and will help us show

that any feasible monotone P (θ) satisfies P ≺F id. For completeness, we include a proof in the

Appendix.

Lemma 1. For monotone P ∈ L1(Θ), P ≺F id if and only if the distribution of P (θ) is a mean-

preserving contraction of the distribution of θ.

For the proof of Lemma 1, note that mean-preserving contraction has a simple characterization

in terms of integral inequalities similar to (1) (Hardy et al., 1934), although these integrals are in

terms of the CDFs of the two random variables. However, by going into quantile space and using the

monotonicity of P (θ), one can translate (1) into the integral characterization of mean-preserving

contraction.

Lemma 2. Let g ∈ L1(Θ) be monotone. Then, P is an extreme point of

MPSF (g) := {P ∈ L1(Θ) | P is monotone and P ≺F g}

if and only if there exists a collection of disjoint intervals [θi, θi) indexed by i ∈ I such that for

almost every θ ∈ [θ, θ],

P (θ) =


g(θ) if θ /∈

⋃
i∈I [θi, θi),∫ θi

θi
g(θ)dF (θ)

F (θi)−F (θi)
if θ ∈ [θi, θi).

Any element of MPSF (g) is an integral over extreme points.

This lemma is a simple generalization of the characterization of extreme points in Kleiner et al.

(2021) using a coordinate change. The extreme P (θ) can be generated by monotone partitional

signals, which we define as follows.

Definition 1. A signal structure (S, σ) is monotone partitional if S = R and σ(θ) = δm(θ) is

degenerate with m : [θ, θ] → R monotone.

An extreme point as in Lemma 2 can be implemented by a monotone partitional signal where

m(θ) = P (θ), that is the signal is revealing when P (θ) is strictly increasing and pools types that

have the same second-order expectation P (θ).

Novel Proof of Theorem 1 Due to Lemma 1, necessity is easy to show. For sufficiency we

use that it is enough to show that extreme points of the monotone functions P (θ) satisfying (1)

are feasible. Then, by Choquet’s theorem, all non-extreme points are also feasible by mixing over

signal structures (in posterior space).

Necessity: The distribution of P (θ) = E[E[θ|s]|θ] is a mean-preserving contraction of the

distribution of E[θ|s], which is a mean-preserving contraction of the distribution of θ. By Lemma

1, this implies P ≺F id.
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Sufficiency: By Lemma 2, any P ∈ MPSF (id) can be represented as an integral over extreme

points. The second-order expectation P is linear under public randomization over signal structures.

If the signal spaces of two signal structures are distinct, then randomizing over the signal structures

delivers the corresponding mixture over the induced second-order expectations. Thus, if we can

generate the extreme P ∈ MPSF (id), we can, after relabeling signal spaces if needed, generate

any P ∈ MPSF (id) by randomization.4 The extreme PMPSF (id) can be generated by monotone

partitional signals, namely by pooling intervals corresponding to the quantile interval where H is

constant and fully revealing intervals where H equals the majorizing function.

0 1
0

1

Figure 1: Example of an extreme P (θ) under θ ∼ U([0, 1]).

Figure 1 shows an example of an extreme P (θ). This P can be generated by a monotone

partitional signal that reveals each state from 0 to θ1, pools all states in [θ1, θ2) together, reveals

all states in [θ2, θ3), and pools all states in [θ3, 1].

3.1 Implications

The first corollary follows directly from our proof of Proposition 1, but is worth stating indepen-

dently.

Corollary 1. Any feasible monotone P (θ) ∈ L1(Θ) can be generated by publicly randomizing over

monotone partitional signal structures.

The corollary states that we can generate monotone feasible second-order expectation by using

very simple and widely used signal structures, namely monotone partitional signal structures. These

signal structures resemble grading or rating schemes with discrete categories, which pool together

intervals of the underlying variable of interest. A simple example of a monotone partitional signal

structure is a grading scheme where all grades greater or equal to 90 are pooled as A’s, all grades

greater or equal to 80 but below 90 are pooled as B’s, etc.

4A similar extreme point argument is used in Yang and Zentefis (2024) to characterize the set of feasible distribu-
tions of posterior quantiles.
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Second, we can use the connection to majorization and extreme points to characterize the

optimal signal structures. The insight of our proof is that the extreme monotone second-order

expectations can be generated by monotone partitional signals. This is useful because our principal’s

problem is a linear optimization problem, in which by Bauer’s maximum principal, an extreme point

is optimal.

To state our result, let h(θ) := θ − 1−F (θ)
f(θ) denote the virtual valuation of type θ ∈ Θ. Further,

define H(θ) :=
∫ θ
θ h(θ′)dθ′ and let conv(H) be the largest convex function that lies below H.

Corollary 2. There exists a solution to the principal’s problem P, that employs a monotone par-

titional signal structure.

More specifically, if the virtual valuation is non-decreasing, then full revelation is optimal. Oth-

erwise, the optimal monotone partitional signal pools exactly those intervals of types on which

conv(H) is affine.

Proof. This result follows directly from section 3.2.1 in Kleiner et al. (2021), when transforming the

rewritten principal’s problem P’ into quantile space, combined with the insight that extreme mono-

tone second-order expectations can be generated by monotone partitional signals, which follows

from our proof of Theorem 1.

This result generalizes and reestablishes the results from Rayo (2013) and Onuchic and Ray

(2023) through majorization techniques. Both papers study versions of our principal’s problem but

restrict for tractability to monotone partitional signals.5 Corollary 2 shows that this restriction is

without loss. Further, it reestablishes their characterizations of the optimal signal structures under

non-monotonic virtual valuation through majorization techniques.

It is important to note the limits of Corollary 2. Our principal’s rewritten problem P’ is linear

in P (θ) because we have assumed a quasi-linear environment: the agent’s cost and the principal’s

value are linear in the action. This is a useful benchmark and reasonable in some circumstances

(see Rayo, 2013). The more complex problem with convex costs for the agent, in which case a

non-extreme point can be optimal, is studied in Smith (2024). Corollary 1 implies nevertheless

that we can generate the solution through randomization over monotone partitional signals.

Finally, and beyond the screening problem studied in this paper, our proof of Theorem 1 can

be used to characterize higher-order expectations. We can define higher-order expectations Pn(θ)

generated by a signal structure (S, σ), recursively via

P2(θ) := P (θ)

Pn(θ) := E[E[Pn−1(θ)|s]|θ = θ]

Intuitively, the third-order expectation can be understood as follows. Conditional on signal s = s,

an observer can form an expectation about the second-order expectation of the agent whose type

5To be precise, Rayo, 2013 restricts to partitional signal structures but due to the incentive constraint it follows
immediately, that we can restrict attention to monotone partitional signals.
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is observed through s. The third-order expectation tells us the expectation that the agent of type

θ has about the expectations other types have about her second-order expectation.

Corollary 3. The set of feasible monotone Pn(θ) coincides with the set of feasible monotone P (θ),

namely MPSF (id).

Proof. The proof proceeds similar to the proof of Proposition 1. We need to show that any feasible

monotone Pn(θ) is majorized by the identity function with respect to F .

Necessity : By construction, the distribution of Pn(θ) is a mean-preserving contraction of the

distribution of Pn−1(θ). By induction, for any n, the distribution of Pn(θ) is a mean-preserving

contraction of θ. By Lemma 1, this implies P ≺F id.

Sufficiency : Because a monotone partitional signal is deterministic, all higher-order expecta-

tions are identical. More precisely, conditional on a signal realization, the second-order expectation

is deterministic and thus equal to the third-order expectation,

E[E[P (θ)|s]︸ ︷︷ ︸
P (θ)

|θ = θ] = E[P (θ)|θ = θ] = P (θ).

Inductively, all higher-order expectations are the same. By our proof of Proposition 1, the extreme

points of MPSF (id) can be generated by publicly randomizing over monotone partitional signals.

Higher-order expectations, like second-order expectations, are linear under public randomization,

thus we can generate all Pn(θ) ∈ MPSF (id).

4 Risk Aversion over Image

This section shows that under risk aversion over image, full privacy can be uniquely optimal. That

is, the incentive instrument is not used and the agent is not screened. We contrast this with

incentive provision through allocating a non-informational good, such as money. In that case, the

instrument is always used and the principal does screen the agent, in the sense that more of the good

is allocated to higher types. To make this comparison in the simplest way, we consider two versions

a simple screening problem with binary types: first, under incentive provision through image and

second, under incentive provision through allocating a non-informational good like money.

To model risk aversion, we assume that the agent values the belief π ∈ ∆(Θ) that the population

holds by v(π) with v concave. For example, the agent’s utility may be a concave function of the

posterior mean, v(π) = v̂(Eπ[θ]) with v̂ concave. Such risk aversion over image can be stem from

agents intrinsic valuation of image due to psychological reasons. Butera et al. (2022) provide evi-

dence for risk aversion over prosocial image, which can be interpreted in such a way. Alternatively,

risk aversion over image can be induced from risk aversion over others goods if image is valued for

instrumental reasons. For example, consider an agent who values image over her type, say ability,

because her attainable wage in the labor market equals her expected ability. If she has risk-averse
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preferences over income, this induces risk aversion over image, because her utility will be a concave

function of her expected ability.

Principal’s Problem To illustrate the mechanism in the simplest example, we restrict attention

to binary types, Θ = {θ, θ}. We identify the set of beliefs ∆(Θ) with the unit interval [0, 1]

and let the prior µ ∈ ∆(Θ) over types be non-degenerate, that is, µ ∈ (0, 1). Otherwise there is

effectively only one type and the problem is trivial. We formulate a general version of the principal’s

problem (P) which allows for the incentive payoffs V to be provided through image or through a

non-informational good by appropriately specifying the set F of feasible payoffs.

max
a,V : Θ→R

(1− µ)a(θ) + µa(θ) (P)

s.t.

θV (θ)− a(θ) ≥ θV (θ)− a(θ) ∀θ ∈ {θ, θ} (IC)

θV (θ)− a(θ) ≥ θ · θ ∀θ ∈ {θ, θ} (IR)

V ∈ F (F)

We consider two versions of the feasibility constraint (F), which correspond to incentive provision

through image and to incentive provision through a non-informational good, respectively. Before

we spell out these two versions, recall that, by standard arguments, the principal’s problem can be

written as a linear optimization problem over the incentive payoffs V subject to monotonicity and

feasibility, that is,

max
V :Θ→R

(1− µ)h(θ)V (θ) + µh(θ)V (θ) (P’)

s.t.

V (θ) ≤ V (θ) (MON)

V ∈ F (F)

In the Appendix 5.3, we show that, under two types and any prior µ, the virtual valuations

(h(θ), h(θ)) are strictly increasing, h(θ) = θ − µ
1−µ(θ − θ) < θ = h(θ).

Incentive Provision through Image First, we consider the feasible incentive payoffs that can

be induced by some revealing some information about the agent’s type when there are image

concerns. As introduced above, we let the value of belief π ∈ ∆(Θ) = [0, 1] to each agent be

v(π) where v : [0, 1] → R is strictly increasing and concave. Further, we assume that v is twice

differentiable.

Assumption 1. The value of image v ∈ C2([0, 1],R) is strictly increasing and concave.

We say the payoff V : Θ → R is generated by a distribution τ ∈ ∆([0, 1]) over posteriors if V (θ)

corresponds to the expected value v(π) of the posterior π, conditioning on the true state being θ,

12



that is,

V (θ) = Eτ [v(π)|θ = θ] ∀θ ∈ Θ.

We let the feasible set of image payoffs FI(v) be the set of functions V : Θ → R that are generated

by some Bayes-consistent distribution τ ∈ ∆([0, 1]) over posteriors π, that is, τ which satisfy

Eτ [π] = µ. That means, we allow the principal to choose any signal structure without parametric

restrictions.

The following theorem shows that when the level of absolute risk aversion over image is pointwise

high enough, then full privacy is uniquely optimal.

Theorem 2. Consider the principal’s problem (P) with incentive provision through image, that is,

F = FI(v). If ∀π ∈ [0, 1] :
−v′′(π)

v′(π)
>

2(h(θ)− h(θ))

(1− π)h(θ) + πh(θ)
, (2)

then no information revelation is uniquely optimal.

We prove this result in the Appendix, where we show that one can rewrite the principal’s

problem as a standard information problem. We show that the under the provided condition, the

value function is strictly concave, so no information revelation is uniquely optimal by Jensen’s

inequality.

Theorem 2 shows that the incentive instrument, revealing information, is sometimes not used

and the agent is not screened. Next, we contrast this result with the standard setup, when incentives

are provided through allocating some non-informational good. In that case, we show that the

incentive instrument is always used when the agent’s utility is differentiable.

Incentive Provision through Allocating a Non-Informational Good Second, we consider

the feasible payoffs that can be induced by distributing among the agents some budget of a divisible

good like money. We say the payoff V : Θ → R is induced by some allocation x : Θ → R≥0 under

utility function u : R≥0 → R and budget b ∈ R>0 if

V (θ) = u(x(θ)) ∀θ ∈ Θ

b ≥ (1− µ)x(θ) + µx(θ).

The first line states that V (θ) is the utility of obtaining x(θ) units of the good. The second line states

that the allocation x does not exceed the budget b. We let the feasible set of allocational payoffs

F¬I(u, b) be the set of payoff functions V : Θ → R that are induced by some allocation x under

utility u and budget b. That is, we allow the principal to choose any budget-balanced allocation. At

the expense of some additional terminology, we could also allow for random allocations or allocating

multiple goods; this would not change our results.

The following proposition shows that no matter the level of risk aversion over the non-informational

good, as long as the utility u is differentiable at b, the agents will be screened.

13



Proposition 1. Consider the principal’s problem (P) with incentive provision through non-informa-

tional goods, that is, F = F¬I(u, b). If u is differentiable at b with u′(b) > 0, then the optimal

mechanism allocates more of the good to the high type, x(θ) > x(θ).

The intuition for this result is as follows. If the utility u is differentiable at b, then u is locally

approximately linear at b.6 Thus, the utility loss from risk aversion is second-order for small

deviations from the “equal allocation” x(θ), x(θ)) = (b, b), which allocates to both types the same.

On the other hand, deviating from the equal allocation by allocating slightly more to the higher

type and slightly less to the lower type, provides an incentive to the high type to choose a higher

action. We show this gain from the generated incentive is first-order and therefore dominates the

second-order loss from risk aversion.

Why does a similar logic not show that the principal should screen when providing incentives

through image? The reason is that the principal has to resort to random allocations of image,

that is, random signal structures, to implement small incentives. To explain the difference between

image and non-informational goods, we first make precise the trade-off the principal has between

the aggregate loss due to risk aversion and creating an incentive for the agent.

Image versus Non-Informational Goods To understand the difference between image and

non-informational goods, it is useful to think of the principal as maximizing a linear combination

of the incentive I := V (θ) − V (θ) and the aggregate payoff A := (1 − µ)V (θ) + µV (θ). In our

screening problem, as usual, the principal’s objective can be written as a linear combination of the

allocation of incentive payoffs V (θ), see (P’). As we show in Appendix 5.3, we can, through a linear

coordinate change, express the principal’s objective U as a linear combination of the incentive I

and the aggregate image utility A, where the weights on both I and A are necessarily positive,

U = (1− µ)h(θ)V (θ) + µh(θ)V (θ) = µ(1− µ)(h(θ)− h(θ))︸ ︷︷ ︸
>0

I + ((1− µ)h(θ) + µh(θ)))︸ ︷︷ ︸
>0

A. (3)

We prove Proposition 1 for non-informational goods by showing that deviating from the equal

allocation and allocating ε more units to the high type provides is a first-order gain to the incentive,

I, but only a second-order loss of aggregate payoff A from risk aversion. By the principal having

a finite marginal rate of substitution between incentive I and aggregate payoff A, for small ε the

principal gains overall.

By contrast, when it comes to image, deviating from no information revelation, the incentive

gain and the aggregate loss are of the same order. Thus, if the principal cares enough about the

incentive vis-à-vis the aggregate payoff, they choose to reveal no information.

This is illustrated in Figure 2, which plots the Pareto frontier of feasible (V (θ), V (θ)) under

image and under a non-informational good. For comparison, we chose v = u and b = µ. The bottom

right corner of the Pareto frontiers correspond to full privacy and the equal allocation, respectively.

Moving from that point along the dotted line preserves the aggregate payoff A but increases the

6Footnote on Loss aversion
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V (θ)

V (θ)

IC Constant A

Pareto frontier for image

Pareto frontier for non-informational good

Figure 2: Pareto frontiers under incentive provision through image and a non-informational good.

incentive I and thereby improves the principal’s objective. Thus, the linear indifference curves of

the principal is less steep than the dotted line. This rules out a corner solution for the Pareto

frontier for non-informational goods, but it allows for a corner solution for the Pareto frontier for

image, for example, under the gray indifference curve, labeled IC, of the principal.

Why are the incentive gain and the aggregate loss of the same order when it comes to image,

by contrast to non-informational goods? The reason is that the principal has to randomize to

achieve a small image incentive, which is not needed when creating an incentive with a divisible

non-informational good. The following example illustrates. Suppose, the principal can divide one

unit of a divisible non-informational good between two agents. To create a small incentive, they

can allocate 1/2 + ε units to the high type and 1/2 − ε units to the low type, which induces the

indicated incentive payoffs (V (θ), V (θ)).

θ̄

θ

s : π = 1
2 + ε

s : π = 1
2 − ε

⇒ V (θ) = u
(
1
2 + ε

)
⇒ V (θ) = u

(
1
2 − ε

)
By contrast, when it comes to image, the principal can only offer a small incentive only by

randomizing. That is because the only non-random signal structures either reveal no information

(and thereby create no incentive) or are fully revealing (and create the maximal incentive). For

example, the following signal structure sends with probability 1/2+ ε the high signal s conditional

on the high type θ and similarly for the low type. The posteriors associated with the high and low

signals are π = 1
2 + ε and π = 1

2 − ε if the prior is µ = 1/2. The two types now receive random

image payoffs, which induces the indicated incentive payoffs ((V (θ), V (θ)).

θ̄

θ

s : π = 1
2 + ε

s : π = 1
2 − ε

p = 1
2 + ε

1
2 − ε

1
2
− ε

p = 1
2 − ε

⇒ V (θ) =
(
1
2 + ε

)
v
(
1
2 + ε

)
+
(
1
2 − ε

)
v
(
1
2 − ε

)
⇒ V (θ) =

(
1
2 + ε

)
v
(
1
2 − ε

)
+
(
1
2 − ε

)
v
(
1
2 + ε

)
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Now, let us compare the aggregate loss and incentive in both cases under u = v. In both cases,

half the agents obtain utility u
(
1
2 + ε

)
= v

(
1
2 + ε

)
and half the agents obtain utility u

(
1
2 − ε

)
=

v
(
1
2 − ε

)
(albeit randomly under image). Thus, the aggregate loss from concavity of v is the same

in both cases, and, in particular, second order in ε. However, the incentive V (θ)− V (θ) is smaller

under image than under the non-informational good, because the higher type receives the higher

belief only some of the time. In particular, one can show that the incentive is first-order in ε under

the non-informational good, but second-order in ε under image. Thus, under a non-informational

good, the incentive gain dominates the aggregate loss for small enough ε while this is not given

under image. Our proof of Theorem 2 implies that, for image, the incentive gain and aggregate

loss are of the same order, regardless of which signal structure is used.
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5 Appendix

Additional assumption: F has continuous positive density.

5.1 Proof of Lemma 1

Proof. It is well known that the distribution of P (θ) is a mean-preserving contraction of the dis-

tribution of θ if and only if the CDF G of P (θ) majorizes the CDF F of θ, that is,

∀θ̂ ∈ [θ, θ] :

∫ θ

θ̂
F (θ)dθ ≤

∫ θ

θ̂
G(θ)dθ,
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with equality at θ̂ = θ. The CDF G majorizes F if and only if F−1 majorizes G−1 (e.g., Shaked

and Shanthikumar, 2007, Theorem 3.A.5.), that is,7

∀q̂ ∈ [0, 1] :

∫ 1

q̂
G−1(q)dq ≤

∫ 1

q̂
F−1(q)dq,

with equality at q̂ = 0. Under comonotonicity (so for all θ, P (θ) and θ correspond to the same

quantile) this is equivalent to

∀q̂ ∈ [0, 1] :

∫ 1

q̂
P (F−1(q))dq ≤

∫ 1

q̂
F−1(q)dq, (4)

with equality at q = 0. Recall that by assumption, F is continuously differentiable and strictly

increasing. Thus, we can apply a coordinate change to q = F (θ) and rewrite the (4) as

∀θ̂ ∈ [θ, θ] :

∫ θ

θ̂
P (θ)dF (θ) ≤

∫ θ

θ̂
θdF (θ).

5.2 Proof of Lemma 2

Proof. The proof carries over the Kleiner et al. (2021) characterization of extreme points by going

into quantile space.

Let

MPSF (g) := {P ∈ L1(R)|P is monotone and P ≺F g}.

That is, MPSF (g) contains the functions P ∈ L1(R) such that

∫ θ

θ̂
P (θ)dF (θ) ≤

∫ θ

θ̂
g(θ)dF (θ) ∀θ̂ ∈ (θ, θ],∫ θ

θ
P (θ)dF (θ) =

∫ θ

θ
g(θ)dF (θ).

Going via the coordinate change q = F (θ) into quantile space, this is equivalent to8∫ 1

q̂
H(q)dq ≤

∫ 1

q̂
g(F−1(q))dq ∀q̂ ∈ (0, 1]∫ 1

0
H(q)dq =

∫ 1

0
g(F−1(q))dq

(5)

7For non-continuous monotonic F , F−1 denotes the right-continuous inverse F−1(q) := sup{x|F (x) ≤ q} for
q ∈ [0, 1].

8Recall that F−1 denotes the right-continuous inverse F−1(q) := sup{x|F (x) ≤ q} for q ∈ [0, 1]. Thus, we have
F−1(F (θ)) = sup{θ′|F (θ′) ≤ F (θ)} = θ by right-continuity of F , so P (θ) = P (F−1(F (θ))).
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where H(q) := P (F−1(q)). Let

MPS(g ◦ F−1) := {H ∈ L1([0, 1])|H is monotone and satisfies (5)}.

The characterization of extreme points from Kleiner et al., 2021, Theorem 1, applies to MPS(g ◦ F−1).

We use the following function to show that the characterization applies analogously to MPSF (g):

γ : MPSF (g) → MPS(g(F−1))

P 7→ H = P ◦ F−1

From the above, one can easily verify that γ is well-defined, linear, and preserves the L1-norm.

By assumption, F is strictly increasing and continuous, thus F : [θ, θ] → [0, 1] is invertible.

Then, γ has an inverse γ′ : H 7→ P = H ◦ F , so γ is a bijection. Thus, γ is an isomorphism on

normed vector spaces and both the Choquet representation (Proposition 1) and the characterization

of extreme points (Theorem 1) from Kleiner et al. (2021) immediately carry over to MPSF (g).

5.3 Screening with Two Types

By standard arguments, the IR constraint holds for low type and the IC constraint holds for the

high type, so we get the following maximization problem.

max(1− µ)a(θ) + µa(θ)

s.t.

θV (θ)− a(θ) = θV (θ)− a(θ) (IC(θ))

θV (θ)− a(θ) = θ2 (IR(θ))

We can rewrite the objective as follows:

a(θ) = θV (θ)− θ2

a(θ) = a(θ) + θ(V (θ)− V (θ)) = θV (θ)− (θ − θ)V (θ)− θ2

⇒ (1− µ)a(θ) + µa(θ) = V (θ)((1− µ)θ − µ(θ − θ)) + µθV (θ)− θ2

Modulo a constant, the objective is

(1− µ)h(θ)V (θ) + µh(θ)V (θ)
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where

h(θ) := θ − µ

1− µ

(
θ − θ

)
< θ

h(θ) := θ

and thus h(θ) < θ < θ = h(θ), or h(θ)− h(θ) > 0.

Finally, we rewrite our objective as a linear combination of A = µV (θ) + (1 − µ)V (θ) and

I = V (θ)− V (θ), we get

V = ((1− µ)h(θ) + µh(θ))︸ ︷︷ ︸
=θ>0

A+ µ(1− µ) (h(θ)− h(θ))︸ ︷︷ ︸
>0

I.

That is, the principal can be understood as caring about a linear combination of aggregate image

utility A and incentive I with positive weights each.

5.4 Proof of Theorem 2

Proof. We prove this result by reformulating the principal’s problem as a standard information prin-

cipal’s problem with a strictly concave value function, making no information revelation uniquely

optimal.

Let ∆µ([0, 1]) ⊂ ∆([0, 1]) denote the set of distributions τ over posteriors π that are Bayes-

consistent, that is, Eτ [π] = µ. We adopt the posterior approach and write the principal’s objective

Uτ as a function of the Bayes-consistent distribution τ ∈ ∆µ([0, 1]) over posteriors π ∈ [0, 1],

Uτ = (1− µ)h(θ)Vτ (θ) + µh(θ)Vτ (θ), (6)

where Vτ (θ) = Eτ [v(π)|θ = θ] is the expected value of the posterior conditional on the true state

being θ. Ignoring the monotonicity constraint, Vτ (θ) ≤ Vτ (θ) for now, the principal’s problem is

simply choosing τ ∈ ∆µ([0, 1]) to maximize Uτ . Conveniently, one can reformulate this conditional

expectation as an unconditional expectation with respect to τ (see also Alonso and Câmara, 2016;

Doval and Smolin, 2024):

Vτ (θ) := Eτ

[1− π

1− µ
v(π)

]
, (7)

Vτ (θ) := Eτ

[π
µ
v(π)

]
. (8)

Inserting (7) and (8) into (6), we rewrite the objective as an unconditional expectation as in

standard information principal’s problems,

Uτ = Eτ [
(
(1− π)h(θ) + πh(θ)

)
v(π)︸ ︷︷ ︸

ṽ(π):=

].
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Taking the derivative of the value function ṽ(π) with respect to π ∈ [0, 1] gives

ṽ′(π) = (h(θ)− h(θ))v(π) + ((1− π)h(θ) + πh(θ))v′(π)

ṽ′′(π) = 2(h(θ)− h(θ))v′(π) + ((1− π)h(θ) + πh(θ))v′′(π)

Under v′(π) ̸= 0, we have

ṽ′′(π) < 0 ⇔ −v′′(π)

v′(π)
>

2(h(θ)− h(θ))

(1− π)h(θ) + πh(θ)
.

Let δ(µ) ∈ ∆([0, 1]) denote the degenerate distribution that reveals no information. Under a strictly

concave value function ṽ(π), Jensen’s inequality implies

Uτ = Eτ [ṽ(π)] ≤ ṽ(Eτ [π]) = ṽ(µ) = Uδ(µ)

with a strict inequality if τ is not degenerate, τ ̸= δ(µ). Because τ = δ(µ) satisfies the monotonicity

constraint, Vτ (θ) ≤ Vτ (θ), no information revelation is uniquely optimal.

5.5 Proof of Proposition 1

Proof. Consider the allocation (b− µ
1−µε, b+ε) for 1−µ

µ b ≥ ε > 0. This allocation is budget balanced

for all ε. We show that for ε small enough, this allocation satisfies the monotonicity constraint and

improves upon the equal allocation (b, b).

Recall that the principal’s objective is a linear combination of the aggregate image utility

A = µV (θ) + (1− µ)V (θ) and incentive I = V (θ)− V (θ). By u being differentiable at b, we can

apply Taylor’s theorem and rewrite A and I as functions of ε up to second-order terms in ε as:

A(ε) = (1− µ)u(b− µ

1− µ
ε) + µ · u(b+ ε) = u(b) +

(
µε− (1− µ)

µ

1− µε

)
︸ ︷︷ ︸

=0

u′(b) + o(ε2)

I(ε) = u(b+ ε)− u(b− µ

1− µ
ε) =

1

1− µ
u′(b)ε+ o(ε2)

Thus, under u′(b) > 0 there is a first-order gain to the incentive I, whereas the change to the

aggregate image utility A is second-order. Hence, even if the change to the aggregate image utility

A is negative (which it is under concave u), the positive effect on the incentive dominates for

small ε as long as the principal has a finite marginal rate of substitution between A and I. Let

the principal’s weights on A and I be hA and hI , respectively. By section 5.3, both weights are

positive, hA, hI > 0. Taking the difference between the achieved value under ε > 0 and the value

under ε = 0, which corresponds to the equal allocation, we get

lim
ε→0

(hAA(ε) + hII(ε))− hAv(b) = lim
ε→0

hI
1

1− µ
v′(µ)︸ ︷︷ ︸

>0

ε+ o(ε2) > 0
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Thus, for ε small enough, the principal’s value is necessarily higher than under the equal allocation.

Moreover, for such ε, we have u(b+ε) > u(b− µ
1−µε), so the monotonicity constraint is satisfied.
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